Showing 1 - 4 results of 4 for search 'Keigo Yamada' Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Author
  • Keigo Yamada

Kotokasuga Keigo

Kotokasuga Keigo is a former sumo wrestler from Kasuga, Fukuoka Prefecture, Japan. He began his professional career in 1993, reaching the top ''makuuchi'' division some 15 years later in 2008. His highest rank was ''maegashira'' 7. He retired in April 2011 after the Japan Sumo Association found him guilty of involvement in match-fixing. Provided by Wikipedia
Showing 1 - 4 results of 4 for search 'Keigo Yamada', query time: 0.03s Refine Results
  1. 1
    Greedy Sensor Selection for Weighted Linear Least Squares Estimation Under Correlated Noise

    Greedy Sensor Selection for Weighted Linear Least Squares Estimation Under Correlated Noise by Keigo Yamada, Yuji Saito, Taku Nonomura, Keisuke Asai

    Published 2022-01-01
    Get full text
    Article
  2. 2
    Effect of Objective Function on Data-Driven Greedy Sparse Sensor Optimization

    Effect of Objective Function on Data-Driven Greedy Sparse Sensor Optimization by Kumi Nakai, Keigo Yamada, Takayuki Nagata, Yuji Saito, Taku Nonomura

    Published 2021-01-01
    Get full text
    Article
  3. 3
    Efficient Sensor Node Selection for Observability Gramian Optimization

    Efficient Sensor Node Selection for Observability Gramian Optimization by Keigo Yamada, Yasuo Sasaki, Takayuki Nagata, Kumi Nakai, Daisuke Tsubakino, Taku Nonomura

    Published 2023-06-01
    Get full text
    Article
  4. 4
    Sensor Selection by Greedy Method for Linear Dynamical Systems: Comparative Study on Fisher-Information-Matrix, Observability-Gramian and Kalman-Filter-Based Indices

    Sensor Selection by Greedy Method for Linear Dynamical Systems: Comparative Study on Fisher-Information-Matrix, Observability-Gramian and Kalman-Filter-Based Indices by Shun Takahashi, Yasuo Sasaki, Takayuki Nagata, Keigo Yamada, Kumi Nakai, Yuji Saito, Taku Nonomura

    Published 2023-01-01
    Get full text
    Article

Search Tools:

  • RSS Feed
  • Email Search

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs