Näytetään 1 - 15 yhteensä 15 tuloksesta haulle 'Mahmut Modanlı', hakuaika: 0,05s
Tarkenna hakua
-
1
On the numerical solution for third order fractional partial differential equation by difference scheme method Tekijä Mahmut Modanli
Julkaistu 2019-03-01
Artikkeli -
2
Two numerical methods for fractional partial differential equation with nonlocal boundary value problem Tekijä Mahmut Modanlı
Julkaistu 2018-09-01
Artikkeli -
3
On the numerical solution for third order fractional partial differential equation by difference scheme method Tekijä Mahmut Modanli
Julkaistu 2019-03-01
Artikkeli -
4
-
5
Stability of Finite Difference Schemes to Pseudo-Hyperbolic Telegraph Equation Tekijä Fatih Özbağ, Mahmut Modanlı
Julkaistu 2022-12-01
Artikkeli -
6
Finite Difference Method for Infection Model of HPV with Cervical Cancer under Caputo Operator Tekijä Bushra Bajjah, Mahmut Modanli
Julkaistu 2024-01-01
Artikkeli -
7
-
8
Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method Tekijä Sadeq Taha Abdulazeez, Mahmut Modanli
Julkaistu 2022-12-01
Artikkeli -
9
Two Numerical Methods for Solving the Schrödinger Parabolic and Pseudoparabolic Partial Differential Equations Tekijä Mahmut Modanli, Bushra Bajjah, Sevgi Kuşulay
Julkaistu 2022-01-01
Artikkeli -
10
Finite difference method for transmission dynamics of Contagious Bovine Pleuropneumonia Tekijä Sait Kıkpınar, Mahmut Modanli, Ali Akgül, Fahd Jarad
Julkaistu 2022-03-01
Artikkeli -
11
Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations Tekijä Sadeq Taha Abdulazeez, Mahmut Modanli, Ahmad Muhamad Husien
Julkaistu 2022-12-01
Artikkeli -
12
-
13
Using matrix stability for variable telegraph partial differential equation Tekijä Mahmut Modanli, Bawar Mohammed Faraj, Faraedoon Waly Ahmed
Julkaistu 2020-07-01
Artikkeli -
14
-
15
Two approximation methods for fractional order Pseudo-Parabolic differential equations Tekijä Mahmut. Modanli, Ecem Göktepe, Ali Akgül, Shami A. M. Alsallami, E.M. Khalil
Julkaistu 2022-12-01
Artikkeli