Advanced Genetic Engineering /

Genetic engineering, also called genetic modification, is the direct human manipulation of an organism's genetic material in a way that does not occur under natural conditions. It involves the use of recombinant DNA techniques, but does not include traditional animal and plant breeding or mutag...

Full description

Bibliographic Details
Main Author: Glover, Stanford, author 645253
Format: text
Language:eng
Published: Delhi, India : World Technologies, 2012
Subjects:
Online Access:http://repository.library.utm.my/id/eprint/2975
_version_ 1796762869911519232
author Glover, Stanford, author 645253
author_facet Glover, Stanford, author 645253
author_sort Glover, Stanford, author 645253
collection OCEAN
description Genetic engineering, also called genetic modification, is the direct human manipulation of an organism's genetic material in a way that does not occur under natural conditions. It involves the use of recombinant DNA techniques, but does not include traditional animal and plant breeding or mutagenesis. Any organism that is generated using these techniques is considered to be a genetically modified organism. The first organisms genetically engineered were bacteria in 1973 and then mice in 1974. Insulin producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994. The most common form of genetic engineering involves the insertion of new genetic material at an unspecified location in the host genome. This is accomplished by isolating and copying the genetic material of interest, generating a construct containing all the genetic elements for correct expression, and then inserting this construct into the host organism. Other forms of genetic engineering include gene targeting and knocking out specific genes via engineered nucleases such as zinc finger nucleases or engineered homing endonucleases. Genetic engineering techniques have been applied in numerous fields including research, biotechnology, and medicine. Medicines such as insulin and human growth hormone are now produced in bacteria, experimental mice such as the oncomouse and the knockout mouse are being used for research purposes and insect resistant and/or herbicide tolerant crops have been commercialized. Genetically engineered plants and animals capable of producing biotechnology drugs more cheaply than current methods (called pharming) are also being developed and in 2009 the FDA approved the sale of the pharmaceutical protein antithrombin produced in the milk of genetically engineered goats.
first_indexed 2024-03-05T16:47:17Z
format text
id KOHA-OAI-TEST:593955
institution Universiti Teknologi Malaysia - OCEAN
language eng
last_indexed 2024-03-05T16:47:17Z
publishDate 2012
publisher Delhi, India : World Technologies,
record_format dspace
spelling KOHA-OAI-TEST:5939552023-01-24T02:44:53ZAdvanced Genetic Engineering / Glover, Stanford, author 645253 text Electronic books 631902 Delhi, India : World Technologies,2012©2012engGenetic engineering, also called genetic modification, is the direct human manipulation of an organism's genetic material in a way that does not occur under natural conditions. It involves the use of recombinant DNA techniques, but does not include traditional animal and plant breeding or mutagenesis. Any organism that is generated using these techniques is considered to be a genetically modified organism. The first organisms genetically engineered were bacteria in 1973 and then mice in 1974. Insulin producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994. The most common form of genetic engineering involves the insertion of new genetic material at an unspecified location in the host genome. This is accomplished by isolating and copying the genetic material of interest, generating a construct containing all the genetic elements for correct expression, and then inserting this construct into the host organism. Other forms of genetic engineering include gene targeting and knocking out specific genes via engineered nucleases such as zinc finger nucleases or engineered homing endonucleases. Genetic engineering techniques have been applied in numerous fields including research, biotechnology, and medicine. Medicines such as insulin and human growth hormone are now produced in bacteria, experimental mice such as the oncomouse and the knockout mouse are being used for research purposes and insect resistant and/or herbicide tolerant crops have been commercialized. Genetically engineered plants and animals capable of producing biotechnology drugs more cheaply than current methods (called pharming) are also being developed and in 2009 the FDA approved the sale of the pharmaceutical protein antithrombin produced in the milk of genetically engineered goats.Genetic engineering, also called genetic modification, is the direct human manipulation of an organism's genetic material in a way that does not occur under natural conditions. It involves the use of recombinant DNA techniques, but does not include traditional animal and plant breeding or mutagenesis. Any organism that is generated using these techniques is considered to be a genetically modified organism. The first organisms genetically engineered were bacteria in 1973 and then mice in 1974. Insulin producing bacteria were commercialized in 1982 and genetically modified food has been sold since 1994. The most common form of genetic engineering involves the insertion of new genetic material at an unspecified location in the host genome. This is accomplished by isolating and copying the genetic material of interest, generating a construct containing all the genetic elements for correct expression, and then inserting this construct into the host organism. Other forms of genetic engineering include gene targeting and knocking out specific genes via engineered nucleases such as zinc finger nucleases or engineered homing endonucleases. Genetic engineering techniques have been applied in numerous fields including research, biotechnology, and medicine. Medicines such as insulin and human growth hormone are now produced in bacteria, experimental mice such as the oncomouse and the knockout mouse are being used for research purposes and insect resistant and/or herbicide tolerant crops have been commercialized. Genetically engineered plants and animals capable of producing biotechnology drugs more cheaply than current methods (called pharming) are also being developed and in 2009 the FDA approved the sale of the pharmaceutical protein antithrombin produced in the milk of genetically engineered goats.Genetic engineeringhttp://repository.library.utm.my/id/eprint/2975URN:ISBN:9788132345978Remote access restricted to users with a valid UTM ID via VPN.
spellingShingle Genetic engineering
Glover, Stanford, author 645253
Advanced Genetic Engineering /
title Advanced Genetic Engineering /
title_full Advanced Genetic Engineering /
title_fullStr Advanced Genetic Engineering /
title_full_unstemmed Advanced Genetic Engineering /
title_short Advanced Genetic Engineering /
title_sort advanced genetic engineering
topic Genetic engineering
url http://repository.library.utm.my/id/eprint/2975
work_keys_str_mv AT gloverstanfordauthor645253 advancedgeneticengineering