Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate

Numerical analysis on thermal enhancement for a single Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is presented in this paper. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures was used as coolant in 220mm x 300mm cooling plate with 22 parallel mini channels...

Full description

Bibliographic Details
Main Authors: Irnie, Zakaria, W. A. N., W. Mohamed, A. M. I., Mamat, R., Saidur, Azmi, W. H., R., Mamat, K. I., Sainan
Format: Article
Language:English
English
Published: Elsevier Ltd. 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/11069/1/Numerical%20Study%20On%20Heat%20Transfer%20Enhancement%20And%20Fluid%20Flow%20for%20Low%20Concentration%20of%20Al2O3%20Water%20-%20Ethylene%20Glycol%20Mixture%20Nanofluid%20in%20A%20Single%20PEMFC%20Cooling%20Plate.pdf
http://umpir.ump.edu.my/id/eprint/11069/7/fkm-2015-rmamat-thermal%20analysis%20of%20heat%20transfer-full.pdf
_version_ 1796990917955026944
author Irnie, Zakaria
W. A. N., W. Mohamed
A. M. I., Mamat
R., Saidur
Azmi, W. H.
R., Mamat
K. I., Sainan
author_facet Irnie, Zakaria
W. A. N., W. Mohamed
A. M. I., Mamat
R., Saidur
Azmi, W. H.
R., Mamat
K. I., Sainan
author_sort Irnie, Zakaria
collection UMP
description Numerical analysis on thermal enhancement for a single Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is presented in this paper. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures was used as coolant in 220mm x 300mm cooling plate with 22 parallel mini channels of 1 x 5 x 100mm. This cooling plate mimiced conventional PEMFC cooling plate as it was made of carbon graphite. Large header was added to have an even velocity distribution across all Re number studied. The cooling plate was subjected to a constant heat flux of 100W that represented the artificial heat load of a single cell. Al2O3 nano particle volume % concentration of 0.1 and 0.5 vol was dispersed in 50:50 (water: Ethylene Glycol) mixtures. The effect of different flow rates to heat transfer enhancement and fluid flow in Re range of 30 to 150 were observed. The result showed that thermal performance has improved by 7.3 and 4.6% for 0.5 and 0.1 vol % Al2O3 consecutively in 50:50 (water:EG) as compared to base fluid of 50:50 (water:EG). It is shown that the higher vol % concentration of Al2O3 the better the heat transfer enhancement but at the expense of higher pumping power required as much as 0.04W due to increase in pressure drop.
first_indexed 2024-03-06T11:58:38Z
format Article
id UMPir11069
institution Universiti Malaysia Pahang
language English
English
last_indexed 2024-03-06T11:58:38Z
publishDate 2015
publisher Elsevier Ltd.
record_format dspace
spelling UMPir110692018-01-23T07:46:54Z http://umpir.ump.edu.my/id/eprint/11069/ Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate Irnie, Zakaria W. A. N., W. Mohamed A. M. I., Mamat R., Saidur Azmi, W. H. R., Mamat K. I., Sainan TJ Mechanical engineering and machinery Numerical analysis on thermal enhancement for a single Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is presented in this paper. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures was used as coolant in 220mm x 300mm cooling plate with 22 parallel mini channels of 1 x 5 x 100mm. This cooling plate mimiced conventional PEMFC cooling plate as it was made of carbon graphite. Large header was added to have an even velocity distribution across all Re number studied. The cooling plate was subjected to a constant heat flux of 100W that represented the artificial heat load of a single cell. Al2O3 nano particle volume % concentration of 0.1 and 0.5 vol was dispersed in 50:50 (water: Ethylene Glycol) mixtures. The effect of different flow rates to heat transfer enhancement and fluid flow in Re range of 30 to 150 were observed. The result showed that thermal performance has improved by 7.3 and 4.6% for 0.5 and 0.1 vol % Al2O3 consecutively in 50:50 (water:EG) as compared to base fluid of 50:50 (water:EG). It is shown that the higher vol % concentration of Al2O3 the better the heat transfer enhancement but at the expense of higher pumping power required as much as 0.04W due to increase in pressure drop. Elsevier Ltd. 2015 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/11069/1/Numerical%20Study%20On%20Heat%20Transfer%20Enhancement%20And%20Fluid%20Flow%20for%20Low%20Concentration%20of%20Al2O3%20Water%20-%20Ethylene%20Glycol%20Mixture%20Nanofluid%20in%20A%20Single%20PEMFC%20Cooling%20Plate.pdf application/pdf en cc_by_nc_nd http://umpir.ump.edu.my/id/eprint/11069/7/fkm-2015-rmamat-thermal%20analysis%20of%20heat%20transfer-full.pdf Irnie, Zakaria and W. A. N., W. Mohamed and A. M. I., Mamat and R., Saidur and Azmi, W. H. and R., Mamat and K. I., Sainan (2015) Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate. Energy Procedia, 79. pp. 259-264. ISSN 1876-6102 . (Published) http://dx.doi.org/10.1016/j.egypro.2015.11.475 DOI: 10.1016/j.egypro.2015.11.475
spellingShingle TJ Mechanical engineering and machinery
Irnie, Zakaria
W. A. N., W. Mohamed
A. M. I., Mamat
R., Saidur
Azmi, W. H.
R., Mamat
K. I., Sainan
Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title_full Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title_fullStr Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title_full_unstemmed Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title_short Numerical Study On Heat Transfer Enhancement And Fluid Flow for Low Concentration of Al2O3 Water - Ethylene Glycol Mixture Nanofluid in A Single PEMFC Cooling Plate
title_sort numerical study on heat transfer enhancement and fluid flow for low concentration of al2o3 water ethylene glycol mixture nanofluid in a single pemfc cooling plate
topic TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/11069/1/Numerical%20Study%20On%20Heat%20Transfer%20Enhancement%20And%20Fluid%20Flow%20for%20Low%20Concentration%20of%20Al2O3%20Water%20-%20Ethylene%20Glycol%20Mixture%20Nanofluid%20in%20A%20Single%20PEMFC%20Cooling%20Plate.pdf
http://umpir.ump.edu.my/id/eprint/11069/7/fkm-2015-rmamat-thermal%20analysis%20of%20heat%20transfer-full.pdf
work_keys_str_mv AT irniezakaria numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT wanwmohamed numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT amimamat numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT rsaidur numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT azmiwh numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT rmamat numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate
AT kisainan numericalstudyonheattransferenhancementandfluidflowforlowconcentrationofal2o3waterethyleneglycolmixturenanofluidinasinglepemfccoolingplate