Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites
The physicochemical properties of an innovative and environmentally friendly composite material based on sugar palm fiber (SPF) and thermoplastic polyurethane (TPU) were examined. The base material with short fibers was extruded and hot pressed to produce the TPU-SPF composites with different synthe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
North Carolina State University
2016
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/15213/1/BioRes_11_4_9438_Mohammed_BSRH_Physicochemical_Palm%20Fibre_Poylurethane_Comp_9759.pdf http://umpir.ump.edu.my/id/eprint/15213/6/fkm-2016-dandi-%20Physico-chemical%20Study%20of%20Eco-friendly.pdf |
_version_ | 1796991692356714496 |
---|---|
author | Mohammed, Ausama A. Bachtiar, Dandi Siregar, J. P. M. R. M., Rejab Syed Farhan, Hasany |
author_facet | Mohammed, Ausama A. Bachtiar, Dandi Siregar, J. P. M. R. M., Rejab Syed Farhan, Hasany |
author_sort | Mohammed, Ausama A. |
collection | UMP |
description | The physicochemical properties of an innovative and environmentally friendly composite material based on sugar palm fiber (SPF) and thermoplastic polyurethane (TPU) were examined. The base material with short fibers was extruded and hot pressed to produce the TPU-SPF composites with different synthetic parameters. Operating parameters including temperature for extrusion (170 to 190 C), rotational velocity (30 to 50 rpm), and fiber particle sizes (160, 250 and 425 micron) were investigated. The aims were to optimize rotational velocity, temperature, and fiber size of the TPU-SPF composites. Firstly, the influence of rotation of velocity and temperature on the tensile properties was investigated. Secondly, effects of different fiber sizes on tensile, flexural properties and impact strength as per ASTM standards were tested. The morphological, thermal and physicochemical properties of the synthesized TPU-SPF composites were ascertained with Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and thermographimetric analysis (TGA). The optimal results were observed with a temperature of 190 C and a rotational velocity of 40 rpm. Meanwhile, the strength and modulus for tensile and flexural were best for fiber size 250 micron. Moreover, the impact strength reached a peaking trend at 250 micron fiber size. |
first_indexed | 2024-03-06T12:09:12Z |
format | Article |
id | UMPir15213 |
institution | Universiti Malaysia Pahang |
language | English English |
last_indexed | 2024-03-06T12:09:12Z |
publishDate | 2016 |
publisher | North Carolina State University |
record_format | dspace |
spelling | UMPir152132018-09-27T08:36:54Z http://umpir.ump.edu.my/id/eprint/15213/ Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites Mohammed, Ausama A. Bachtiar, Dandi Siregar, J. P. M. R. M., Rejab Syed Farhan, Hasany TJ Mechanical engineering and machinery TP Chemical technology The physicochemical properties of an innovative and environmentally friendly composite material based on sugar palm fiber (SPF) and thermoplastic polyurethane (TPU) were examined. The base material with short fibers was extruded and hot pressed to produce the TPU-SPF composites with different synthetic parameters. Operating parameters including temperature for extrusion (170 to 190 C), rotational velocity (30 to 50 rpm), and fiber particle sizes (160, 250 and 425 micron) were investigated. The aims were to optimize rotational velocity, temperature, and fiber size of the TPU-SPF composites. Firstly, the influence of rotation of velocity and temperature on the tensile properties was investigated. Secondly, effects of different fiber sizes on tensile, flexural properties and impact strength as per ASTM standards were tested. The morphological, thermal and physicochemical properties of the synthesized TPU-SPF composites were ascertained with Fourier Transform Infrared Spectroscopy (FT-IR), scanning electron microscopy (SEM), X-Ray Diffraction (XRD), and thermographimetric analysis (TGA). The optimal results were observed with a temperature of 190 C and a rotational velocity of 40 rpm. Meanwhile, the strength and modulus for tensile and flexural were best for fiber size 250 micron. Moreover, the impact strength reached a peaking trend at 250 micron fiber size. North Carolina State University 2016-11 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/15213/1/BioRes_11_4_9438_Mohammed_BSRH_Physicochemical_Palm%20Fibre_Poylurethane_Comp_9759.pdf application/pdf en http://umpir.ump.edu.my/id/eprint/15213/6/fkm-2016-dandi-%20Physico-chemical%20Study%20of%20Eco-friendly.pdf Mohammed, Ausama A. and Bachtiar, Dandi and Siregar, J. P. and M. R. M., Rejab and Syed Farhan, Hasany (2016) Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites. BioResources, 11 (4). pp. 9438-9454. ISSN 1930-2126 (print); 1930-2126 (online). (Published) http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_4_9438_Mohammed_Physicochemical_EcoFriendly_Sugar_Palm_Fiber |
spellingShingle | TJ Mechanical engineering and machinery TP Chemical technology Mohammed, Ausama A. Bachtiar, Dandi Siregar, J. P. M. R. M., Rejab Syed Farhan, Hasany Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title | Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title_full | Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title_fullStr | Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title_full_unstemmed | Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title_short | Physico-chemical Study of Eco-friendly Sugar Palm Fiber Thermoplastic Polyurethane Composites |
title_sort | physico chemical study of eco friendly sugar palm fiber thermoplastic polyurethane composites |
topic | TJ Mechanical engineering and machinery TP Chemical technology |
url | http://umpir.ump.edu.my/id/eprint/15213/1/BioRes_11_4_9438_Mohammed_BSRH_Physicochemical_Palm%20Fibre_Poylurethane_Comp_9759.pdf http://umpir.ump.edu.my/id/eprint/15213/6/fkm-2016-dandi-%20Physico-chemical%20Study%20of%20Eco-friendly.pdf |
work_keys_str_mv | AT mohammedausamaa physicochemicalstudyofecofriendlysugarpalmfiberthermoplasticpolyurethanecomposites AT bachtiardandi physicochemicalstudyofecofriendlysugarpalmfiberthermoplasticpolyurethanecomposites AT siregarjp physicochemicalstudyofecofriendlysugarpalmfiberthermoplasticpolyurethanecomposites AT mrmrejab physicochemicalstudyofecofriendlysugarpalmfiberthermoplasticpolyurethanecomposites AT syedfarhanhasany physicochemicalstudyofecofriendlysugarpalmfiberthermoplasticpolyurethanecomposites |