Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine

The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combus...

Full description

Bibliographic Details
Main Authors: Hagos, F. Y., A. Rashid, A. Aziz, Shaharin, A. Sulaiman, R., Mamat
Format: Article
Language:English
Published: Elsevier 2019
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/18920/1/Engine%20speed%20and%20air.pdf
_version_ 1796992348728590336
author Hagos, F. Y.
A. Rashid, A. Aziz
Shaharin, A. Sulaiman
R., Mamat
author_facet Hagos, F. Y.
A. Rashid, A. Aziz
Shaharin, A. Sulaiman
R., Mamat
author_sort Hagos, F. Y.
collection UMP
description The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds.
first_indexed 2024-03-06T12:18:45Z
format Article
id UMPir18920
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T12:18:45Z
publishDate 2019
publisher Elsevier
record_format dspace
spelling UMPir189202019-06-10T01:29:12Z http://umpir.ump.edu.my/id/eprint/18920/ Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine Hagos, F. Y. A. Rashid, A. Aziz Shaharin, A. Sulaiman R., Mamat TJ Mechanical engineering and machinery The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds. Elsevier 2019-11 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/18920/1/Engine%20speed%20and%20air.pdf Hagos, F. Y. and A. Rashid, A. Aziz and Shaharin, A. Sulaiman and R., Mamat (2019) Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine. International Journal of Hydrogen Energy, 44 (1). pp. 477-486. ISSN 0360-3199. (Published) https://doi.org/10.1016/j.ijhydene.2018.02.093 https://doi.org/10.1016/j.ijhydene.2018.02.093
spellingShingle TJ Mechanical engineering and machinery
Hagos, F. Y.
A. Rashid, A. Aziz
Shaharin, A. Sulaiman
R., Mamat
Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title_full Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title_fullStr Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title_full_unstemmed Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title_short Engine speed and air-fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in DI SI engine
title_sort engine speed and air fuel ratio effect on the combustion of methane augmented hydrogen rich syngas in di si engine
topic TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/18920/1/Engine%20speed%20and%20air.pdf
work_keys_str_mv AT hagosfy enginespeedandairfuelratioeffectonthecombustionofmethaneaugmentedhydrogenrichsyngasindisiengine
AT arashidaaziz enginespeedandairfuelratioeffectonthecombustionofmethaneaugmentedhydrogenrichsyngasindisiengine
AT shaharinasulaiman enginespeedandairfuelratioeffectonthecombustionofmethaneaugmentedhydrogenrichsyngasindisiengine
AT rmamat enginespeedandairfuelratioeffectonthecombustionofmethaneaugmentedhydrogenrichsyngasindisiengine