Effect of UV exposure on bimodal HDPE floats for floating solar application

tKeeping in view the conservation of natural resources, the power generation from the solarphotovoltaic system is increasing day by day to meet the demand of energy worldwide.There are constraints of availability of space for ground mounted solar PV system for largeinstallations. In some countries w...

Full description

Bibliographic Details
Main Authors: Sahu, Alok K., K., Sudhakar
Format: Article
Language:English
English
Published: Elsevier Ltd 2017
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/20786/1/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats.pdf
http://umpir.ump.edu.my/id/eprint/20786/7/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats%20for%20floating.pdf
_version_ 1825812014422818816
author Sahu, Alok K.
K., Sudhakar
author_facet Sahu, Alok K.
K., Sudhakar
author_sort Sahu, Alok K.
collection UMP
description tKeeping in view the conservation of natural resources, the power generation from the solarphotovoltaic system is increasing day by day to meet the demand of energy worldwide.There are constraints of availability of space for ground mounted solar PV system for largeinstallations. In some countries water bodies are being utilized to install solar PV system toreduce land use. Few floating systems using plastics have been developed to install a solarpanel on it. After extensive literature studies on properties of polyolefins, High-density polyethylene (HDPE) is found to be better material for this purpose.In order to measure its sustainability, annotation of mechanical properties using bimodalpoly ethylene under accelerated weathering condition has been carried out in differentintervals till 1152 h, to perceive the lifespan of HDPE material. The change in its mechan-ical properties like tensile strength, elongation at break, maximum load bearing capacity,impact resistance and hardness were evaluated. It was observed that the tensile strengthwas reduced from 23.22 MPa to 14.64 MPa after accelerated UV exposure. It was observed thatafter 1000 h of exposure to accelerated weathering the material still has the tendency to holda constant load of 637.81 N without rupture, compared to non-weathered sample (955.16 N).The elongation at break was reduced but elongation of 6.24% was maintained after 1152 hof accelerated exposure, which depicts the elasticity of the material, is still maintained. Theimpact resistance did not show a significant change during this period, the value varies inthe range of 13.54–10.06 kJ/m2. However, the hardness was increased from 61 to 66 (Shore D)due to deterioration of low molecular weight polymer present in bimodal PE. It is concludedthat the mechanical properties of Biomodal HDPE material after accelerated UV exposuredoes not have much effect and is safe to bear the load of solar panels and other accessoriesmounted over it. Further studies can be done using UV stabilized biomodal HDPE.
first_indexed 2024-03-06T12:22:52Z
format Article
id UMPir20786
institution Universiti Malaysia Pahang
language English
English
last_indexed 2024-03-06T12:22:52Z
publishDate 2017
publisher Elsevier Ltd
record_format dspace
spelling UMPir207862018-08-15T06:57:20Z http://umpir.ump.edu.my/id/eprint/20786/ Effect of UV exposure on bimodal HDPE floats for floating solar application Sahu, Alok K. K., Sudhakar TJ Mechanical engineering and machinery tKeeping in view the conservation of natural resources, the power generation from the solarphotovoltaic system is increasing day by day to meet the demand of energy worldwide.There are constraints of availability of space for ground mounted solar PV system for largeinstallations. In some countries water bodies are being utilized to install solar PV system toreduce land use. Few floating systems using plastics have been developed to install a solarpanel on it. After extensive literature studies on properties of polyolefins, High-density polyethylene (HDPE) is found to be better material for this purpose.In order to measure its sustainability, annotation of mechanical properties using bimodalpoly ethylene under accelerated weathering condition has been carried out in differentintervals till 1152 h, to perceive the lifespan of HDPE material. The change in its mechan-ical properties like tensile strength, elongation at break, maximum load bearing capacity,impact resistance and hardness were evaluated. It was observed that the tensile strengthwas reduced from 23.22 MPa to 14.64 MPa after accelerated UV exposure. It was observed thatafter 1000 h of exposure to accelerated weathering the material still has the tendency to holda constant load of 637.81 N without rupture, compared to non-weathered sample (955.16 N).The elongation at break was reduced but elongation of 6.24% was maintained after 1152 hof accelerated exposure, which depicts the elasticity of the material, is still maintained. Theimpact resistance did not show a significant change during this period, the value varies inthe range of 13.54–10.06 kJ/m2. However, the hardness was increased from 61 to 66 (Shore D)due to deterioration of low molecular weight polymer present in bimodal PE. It is concludedthat the mechanical properties of Biomodal HDPE material after accelerated UV exposuredoes not have much effect and is safe to bear the load of solar panels and other accessoriesmounted over it. Further studies can be done using UV stabilized biomodal HDPE. Elsevier Ltd 2017-11-22 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/20786/1/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats.pdf pdf en http://umpir.ump.edu.my/id/eprint/20786/7/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats%20for%20floating.pdf Sahu, Alok K. and K., Sudhakar (2017) Effect of UV exposure on bimodal HDPE floats for floating solar application. Journal of Materials Research and Technology. pp. 1-10. ISSN 2238-7854. (In Press / Online First) (In Press / Online First) https://www.sciencedirect.com/science/article/pii/S2238785416302794 DOI: org/10.1016/j.jmrt.2017.10.002
spellingShingle TJ Mechanical engineering and machinery
Sahu, Alok K.
K., Sudhakar
Effect of UV exposure on bimodal HDPE floats for floating solar application
title Effect of UV exposure on bimodal HDPE floats for floating solar application
title_full Effect of UV exposure on bimodal HDPE floats for floating solar application
title_fullStr Effect of UV exposure on bimodal HDPE floats for floating solar application
title_full_unstemmed Effect of UV exposure on bimodal HDPE floats for floating solar application
title_short Effect of UV exposure on bimodal HDPE floats for floating solar application
title_sort effect of uv exposure on bimodal hdpe floats for floating solar application
topic TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/20786/1/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats.pdf
http://umpir.ump.edu.my/id/eprint/20786/7/Effect%20of%20UV%20exposure%20on%20bimodal%20HDPE%20floats%20for%20floating.pdf
work_keys_str_mv AT sahualokk effectofuvexposureonbimodalhdpefloatsforfloatingsolarapplication
AT ksudhakar effectofuvexposureonbimodalhdpefloatsforfloatingsolarapplication