Summary: | Growing cells on microcarriers may have overcome the limitation of conventional cell culture system. However, the main challenge remains at ensuring the surface biocompatibility with cells. Polycaprolactone (PCL), a biodegradable polymer, has received considerable attention because of its excellent mechanical properties and degradation kinetics that suit various applications, but its non-polar hydrocarbon moiety renders it sub-optimal for cell attachment. In this present study, the aim was to improve biocompatibility of PCL microcarrier by introducing oxygen functional group via ultraviolet irradiation and ozone aeration (UV/O3 system) to allow covalent immobilization of gelatin on the PCL microcarrier surface. Respond surface methodology was used as a statistical approach to optimized parameters that effect the immobilization of gelatin. The parameters used to maximized amount of gelatin immobilize were the mol ratio of COOH:EDAC, NHS concentration and gelatin concentration. The optimum conditions for maximum amount of gelatin (1797.33 µg/g) on the surface of PCL were as follows: 1.5 of COOH:EDAC ratio, 10 mM NHS concentration and, 80 mg/ml gelatin. The result shows that gelatin coated PCL microcarrier promote more and rapid cell adhesion with density of 16.5 ×105 cells/ml as compared to raw PCL microcarrier (2.4×105 cells/ml) and UV/O3 treated PCL microcarrier (4.25×105 cells/ml). Therefore, immobilization of gelatin with optimized parameters onto PCL microcarrier improved biocompatibility of PCL microcarrier.
|