Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors
Gel polymer electrolytes (GPEs) are promising candidates for highly efficient flexible electrochemical energy storage devices as they reduce leakage and size of the device as well as improving versatility with varied choice of solvents, polymers, and ions. However, the electrochemical mechanisms gov...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Chemical Society (ACS Publications)
2019
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/24001/7/Polymer%20versus%20Cation%20of%20Gel%20Polymer%20Electrolytes%20in%20the%20Charge%20Storage%20of%20Asymmetric%20Supercapacitors.pdf |
_version_ | 1825812536597938176 |
---|---|
author | Pal, Bhupender Amina, Yasin Ria, Kunwar Yang, Shengyuan M. M., Yusoff Rajan, Jose |
author_facet | Pal, Bhupender Amina, Yasin Ria, Kunwar Yang, Shengyuan M. M., Yusoff Rajan, Jose |
author_sort | Pal, Bhupender |
collection | UMP |
description | Gel polymer electrolytes (GPEs) are promising candidates for highly efficient flexible electrochemical energy storage devices as they reduce leakage and size of the device as well as improving versatility with varied choice of solvents, polymers, and ions. However, the electrochemical mechanisms governing supercapacitive charge storage using a varied choice of polymers and cations (PVA, PEG, PEO-based Na + and K + ) are not systematically evaluated. In this work, the role of GPEs on the charge storage mechanism of a flexible solid-state asymmetric supercapacitor fabricated using porous carbon as the cathode and SnO 2 -TiO 2 composite flower as the anode with various GPEs, viz., poly(vinyl alcohol), poly(ethylene oxide), poly(ethylene glycol)-NaOH, and KOH, is reported. The composite electrode greatly improves the ion transportation, and the GPEs provide interconnected ion transport channels. The as-fabricated porous carbon/GPE/composite electrode as a flexible asymmetric supercapacitor displays an increased specific capacitance (C S up to ∼42.3 F g -1 ) compared to aqueous electrolytes (up to ∼14.1 F g -1 ). Among the studied GPEs, the poly(ethylene oxide)-NaOH-based GPE showed higher C S than poly(vinyl alcohol)-NaOH and poly(ethylene glycol)-NaOH, as the former offered a high cation response under the charge/discharge process. |
first_indexed | 2024-03-06T12:30:38Z |
format | Article |
id | UMPir24001 |
institution | Universiti Malaysia Pahang |
language | English |
last_indexed | 2024-03-06T12:30:38Z |
publishDate | 2019 |
publisher | American Chemical Society (ACS Publications) |
record_format | dspace |
spelling | UMPir240012019-03-07T03:05:37Z http://umpir.ump.edu.my/id/eprint/24001/ Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors Pal, Bhupender Amina, Yasin Ria, Kunwar Yang, Shengyuan M. M., Yusoff Rajan, Jose QC Physics QD Chemistry TK Electrical engineering. Electronics Nuclear engineering Gel polymer electrolytes (GPEs) are promising candidates for highly efficient flexible electrochemical energy storage devices as they reduce leakage and size of the device as well as improving versatility with varied choice of solvents, polymers, and ions. However, the electrochemical mechanisms governing supercapacitive charge storage using a varied choice of polymers and cations (PVA, PEG, PEO-based Na + and K + ) are not systematically evaluated. In this work, the role of GPEs on the charge storage mechanism of a flexible solid-state asymmetric supercapacitor fabricated using porous carbon as the cathode and SnO 2 -TiO 2 composite flower as the anode with various GPEs, viz., poly(vinyl alcohol), poly(ethylene oxide), poly(ethylene glycol)-NaOH, and KOH, is reported. The composite electrode greatly improves the ion transportation, and the GPEs provide interconnected ion transport channels. The as-fabricated porous carbon/GPE/composite electrode as a flexible asymmetric supercapacitor displays an increased specific capacitance (C S up to ∼42.3 F g -1 ) compared to aqueous electrolytes (up to ∼14.1 F g -1 ). Among the studied GPEs, the poly(ethylene oxide)-NaOH-based GPE showed higher C S than poly(vinyl alcohol)-NaOH and poly(ethylene glycol)-NaOH, as the former offered a high cation response under the charge/discharge process. American Chemical Society (ACS Publications) 2019-01-01 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/24001/7/Polymer%20versus%20Cation%20of%20Gel%20Polymer%20Electrolytes%20in%20the%20Charge%20Storage%20of%20Asymmetric%20Supercapacitors.pdf Pal, Bhupender and Amina, Yasin and Ria, Kunwar and Yang, Shengyuan and M. M., Yusoff and Rajan, Jose (2019) Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors. Industrial and Engineering Chemistry Research, 58 (2). pp. 654-664. ISSN 0888-5885. (Published) https://pubs.acs.org/doi/10.1021/acs.iecr.8b03902 http://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03902 |
spellingShingle | QC Physics QD Chemistry TK Electrical engineering. Electronics Nuclear engineering Pal, Bhupender Amina, Yasin Ria, Kunwar Yang, Shengyuan M. M., Yusoff Rajan, Jose Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title | Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title_full | Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title_fullStr | Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title_full_unstemmed | Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title_short | Polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
title_sort | polymer versus cation of gel polymer electrolytes in the charge storage of asymmetric supercapacitors |
topic | QC Physics QD Chemistry TK Electrical engineering. Electronics Nuclear engineering |
url | http://umpir.ump.edu.my/id/eprint/24001/7/Polymer%20versus%20Cation%20of%20Gel%20Polymer%20Electrolytes%20in%20the%20Charge%20Storage%20of%20Asymmetric%20Supercapacitors.pdf |
work_keys_str_mv | AT palbhupender polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors AT aminayasin polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors AT riakunwar polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors AT yangshengyuan polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors AT mmyusoff polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors AT rajanjose polymerversuscationofgelpolymerelectrolytesinthechargestorageofasymmetricsupercapacitors |