Oppositional learning prediction operator with jumping rate for simulated kalman filter

Simulated Kalman filter (SKF) is among the new generation of metaheuristic optimization algorithm established in 2015. In this study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional lea...

Cijeli opis

Bibliografski detalji
Glavni autori: Badaruddin, Muhammad, Mohd Saberi, Mohamad, Zuwairie, Ibrahim, Kamil Zakwan, Mohd Azmi, Mohd Ibrahim, Shapiai, Mohd Falfazli, Mat Jusof
Format: Conference or Workshop Item
Jezik:English
English
Izdano: IEEE 2019
Teme:
Online pristup:http://umpir.ump.edu.my/id/eprint/25147/1/43.%20Oppositional%20learning%20prediction%20operator%20with%20jumping%20rate.pdf
http://umpir.ump.edu.my/id/eprint/25147/2/43.1%20Oppositional%20learning%20prediction%20operator%20with%20jumping%20rate.pdf