Oppositional learning prediction operator with jumping rate for simulated kalman filter

Simulated Kalman filter (SKF) is among the new generation of metaheuristic optimization algorithm established in 2015. In this study, we introduce a prediction operator in SKF to prolong its exploration and to avoid premature convergence. The proposed prediction operator is based on oppositional lea...

Полное описание

Библиографические подробности
Главные авторы: Badaruddin, Muhammad, Mohd Saberi, Mohamad, Zuwairie, Ibrahim, Kamil Zakwan, Mohd Azmi, Mohd Ibrahim, Shapiai, Mohd Falfazli, Mat Jusof
Формат: Conference or Workshop Item
Язык:English
English
Опубликовано: IEEE 2019
Предметы:
Online-ссылка:http://umpir.ump.edu.my/id/eprint/25147/1/43.%20Oppositional%20learning%20prediction%20operator%20with%20jumping%20rate.pdf
http://umpir.ump.edu.my/id/eprint/25147/2/43.1%20Oppositional%20learning%20prediction%20operator%20with%20jumping%20rate.pdf