Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid
Enrichment of heat transfer rate will be useful in various engineering application. According to Fourier’s Law of Conduction, thermal conductivity has proportional relation with heat transfer rate. Most of the conventional thermal transport fluid has low thermal conductivity value which is not suffi...
Main Authors: | , , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English English |
Published: |
Universiti Malaysia Pahang
2019
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/26107/1/84.%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf http://umpir.ump.edu.my/id/eprint/26107/2/84.1%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf |
_version_ | 1796993596118794240 |
---|---|
author | K., Kadirgama D., Ramasamy M. M., Rahman Mahendran, Samykano W. S., W. Harun |
author_facet | K., Kadirgama D., Ramasamy M. M., Rahman Mahendran, Samykano W. S., W. Harun |
author_sort | K., Kadirgama |
collection | UMP |
description | Enrichment of heat transfer rate will be useful in various engineering application. According to Fourier’s Law of Conduction, thermal conductivity has proportional relation with heat transfer rate. Most of the conventional thermal transport fluid has low thermal conductivity value which is not sufficient for massive heat removal. Since then, nanofluid becomes a promising remedy to produce thermal transport fluid which has ability to remove high thermal energy. The evolutionary of nanosubstance begins with usage of nanoparticle such as TiO2, SiO2 and Al2O3. Cellulose Nanocrystal (CNC) is a nano-scaled fibril that is extracted from plant. It is a renewable material which is also biodegradable. It leads to a green environment products. In this paper, thermal conductivity of CNC weight concentration of 7.4% dispersed in ethylene glycol-water mixture at 40:60 ratio is determined experimentally. Hence, effective thermal conductivity model is proposed by using statistical analytical tool, Minitab 17. |
first_indexed | 2024-03-06T12:36:14Z |
format | Conference or Workshop Item |
id | UMPir26107 |
institution | Universiti Malaysia Pahang |
language | English English |
last_indexed | 2024-03-06T12:36:14Z |
publishDate | 2019 |
publisher | Universiti Malaysia Pahang |
record_format | dspace |
spelling | UMPir261072019-10-17T04:57:30Z http://umpir.ump.edu.my/id/eprint/26107/ Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid K., Kadirgama D., Ramasamy M. M., Rahman Mahendran, Samykano W. S., W. Harun TJ Mechanical engineering and machinery Enrichment of heat transfer rate will be useful in various engineering application. According to Fourier’s Law of Conduction, thermal conductivity has proportional relation with heat transfer rate. Most of the conventional thermal transport fluid has low thermal conductivity value which is not sufficient for massive heat removal. Since then, nanofluid becomes a promising remedy to produce thermal transport fluid which has ability to remove high thermal energy. The evolutionary of nanosubstance begins with usage of nanoparticle such as TiO2, SiO2 and Al2O3. Cellulose Nanocrystal (CNC) is a nano-scaled fibril that is extracted from plant. It is a renewable material which is also biodegradable. It leads to a green environment products. In this paper, thermal conductivity of CNC weight concentration of 7.4% dispersed in ethylene glycol-water mixture at 40:60 ratio is determined experimentally. Hence, effective thermal conductivity model is proposed by using statistical analytical tool, Minitab 17. Universiti Malaysia Pahang 2019 Conference or Workshop Item PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/26107/1/84.%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf pdf en http://umpir.ump.edu.my/id/eprint/26107/2/84.1%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf K., Kadirgama and D., Ramasamy and M. M., Rahman and Mahendran, Samykano and W. S., W. Harun (2019) Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid. In: 27th Annual International Conference on Composites or Nano Engineering , 13-21 Julai 2019 , University of Granada, Spain. pp. 1-4.. (Unpublished) |
spellingShingle | TJ Mechanical engineering and machinery K., Kadirgama D., Ramasamy M. M., Rahman Mahendran, Samykano W. S., W. Harun Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title | Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title_full | Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title_fullStr | Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title_full_unstemmed | Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title_short | Analysis of thermal Conductivity for Cellulose Nanocrystal (CNC) based nanofluid |
title_sort | analysis of thermal conductivity for cellulose nanocrystal cnc based nanofluid |
topic | TJ Mechanical engineering and machinery |
url | http://umpir.ump.edu.my/id/eprint/26107/1/84.%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf http://umpir.ump.edu.my/id/eprint/26107/2/84.1%20Analysis%20of%20thermal%20Conductivity%20for%20Cellulose%20nanocrystal%20%28CNC%29.pdf |
work_keys_str_mv | AT kkadirgama analysisofthermalconductivityforcellulosenanocrystalcncbasednanofluid AT dramasamy analysisofthermalconductivityforcellulosenanocrystalcncbasednanofluid AT mmrahman analysisofthermalconductivityforcellulosenanocrystalcncbasednanofluid AT mahendransamykano analysisofthermalconductivityforcellulosenanocrystalcncbasednanofluid AT wswharun analysisofthermalconductivityforcellulosenanocrystalcncbasednanofluid |