Bleeding classification of enhanced wireless capsule endoscopy images using deep convolutional neural network
This paper investigates the performance of a Deep Convolutional Neural Network (DCNN) algorithm to identify bleeding areas of wireless capsule endoscopy (WCE) images without known prior knowledge of bleeding and normal features of the images. In this study, a pre-processing technique has been propos...
Main Authors: | Rosdiana, Shahril, Saito, Atsushi, Shimizu, Akinobu, Sabariah, Baharun |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado: |
Institute of Information Science
2020
|
Subjects: | |
Acceso en liña: | http://umpir.ump.edu.my/id/eprint/26711/1/Bleeding%20classification%20of%20enhanced%20wireless%20capsule%20endoscopy%20images%20.pdf |
Títulos similares
-
CLASSIFICATION OF BLEEDING AREAS FOR ENHANCED WIRELESS CAPSULE IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORK /
por: Rosdiana Shahril, author 392719, et al.
Publicado: (2017) -
CLASSIFICATION OF BLEEDING AREAS FOR ENHANCED WIRELESS CAPSULE IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORK /
por: Rosdiana Shahril, author 392719, et al.
Publicado: (2017) -
Web page classification using convolutional neural network (CNN) towards eliminating internet addiction
por: Siti Hawa, Apandi, et al.
Publicado: (2021) -
Super-low resolution face recognition using integrated Efficient Sub-Pixel Convolutional Neural Network (ESPCN) and Convolutional Neural Network (CNN)
por: Talab, Mohammed Ahmed, et al.
Publicado: (2019) -
Automated toll collection system based on vehicle type classification using sparse-filtered convolutional neural networks with layer-skipping strategy (SF-CNNLS)
por: Suryanti, Awang, et al.
Publicado: (2018)