Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming
This study investigates the applicability of the Leven–Marquardt algorithm, Bayesian regularization, and a scaled conjugate gradient algorithm as training algorithms for an artificial neural network (ANN) predictively modeling the rate of CO and H2 production by methane dry reforming over a Co/Pr2O3...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI
2019
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/26852/1/Artificial%20intelligence%20modelling%20approach%20for%20the%20prediction%20of%20CO.pdf |
_version_ | 1825813056255426560 |
---|---|
author | Ayodele, Bamidele V. Siti Indati, Mustapa Alsaffar, May Ali Cheng, C. K. |
author_facet | Ayodele, Bamidele V. Siti Indati, Mustapa Alsaffar, May Ali Cheng, C. K. |
author_sort | Ayodele, Bamidele V. |
collection | UMP |
description | This study investigates the applicability of the Leven–Marquardt algorithm, Bayesian regularization, and a scaled conjugate gradient algorithm as training algorithms for an artificial neural network (ANN) predictively modeling the rate of CO and H2 production by methane dry reforming over a Co/Pr2O3 catalyst. The dataset employed for the ANN modeling was obtained using a central composite experimental design. The input parameters consisted of CH4 partial pressure, CO2 partial pressure, and reaction temperature, while the target parameters included the rate of CO and H2 production. A neural network architecture of 3 13 2, 3 15 2, and 3 15 2 representing the input layer, hidden neuron layer, and target (output) layer were employed for the Leven–Marquardt, Bayesian regularization, and scaled conjugate gradient training algorithms, respectively. The ANN training with each of the algorithms resulted in an accurate prediction of the rate of CO and H2 production. The best prediction was, however, obtained using the Bayesian regularization algorithm with the lowest standard error of estimates (SEE). The high values of coefficient of determination (R2 > 0.9) obtained from the parity plots are an indication that the predicted rates of CO and H2 production were strongly correlated with the observed values. |
first_indexed | 2024-03-06T12:38:21Z |
format | Article |
id | UMPir26852 |
institution | Universiti Malaysia Pahang |
language | English |
last_indexed | 2024-03-06T12:38:21Z |
publishDate | 2019 |
publisher | MDPI |
record_format | dspace |
spelling | UMPir268522020-03-19T07:02:03Z http://umpir.ump.edu.my/id/eprint/26852/ Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming Ayodele, Bamidele V. Siti Indati, Mustapa Alsaffar, May Ali Cheng, C. K. TP Chemical technology This study investigates the applicability of the Leven–Marquardt algorithm, Bayesian regularization, and a scaled conjugate gradient algorithm as training algorithms for an artificial neural network (ANN) predictively modeling the rate of CO and H2 production by methane dry reforming over a Co/Pr2O3 catalyst. The dataset employed for the ANN modeling was obtained using a central composite experimental design. The input parameters consisted of CH4 partial pressure, CO2 partial pressure, and reaction temperature, while the target parameters included the rate of CO and H2 production. A neural network architecture of 3 13 2, 3 15 2, and 3 15 2 representing the input layer, hidden neuron layer, and target (output) layer were employed for the Leven–Marquardt, Bayesian regularization, and scaled conjugate gradient training algorithms, respectively. The ANN training with each of the algorithms resulted in an accurate prediction of the rate of CO and H2 production. The best prediction was, however, obtained using the Bayesian regularization algorithm with the lowest standard error of estimates (SEE). The high values of coefficient of determination (R2 > 0.9) obtained from the parity plots are an indication that the predicted rates of CO and H2 production were strongly correlated with the observed values. MDPI 2019-08-31 Article PeerReviewed pdf en cc_by_4 http://umpir.ump.edu.my/id/eprint/26852/1/Artificial%20intelligence%20modelling%20approach%20for%20the%20prediction%20of%20CO.pdf Ayodele, Bamidele V. and Siti Indati, Mustapa and Alsaffar, May Ali and Cheng, C. K. (2019) Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming. Catalysts, 9 (9). pp. 1-20. ISSN 2073-4344. (Published) https://doi.org/10.3390/catal9090738 https://doi.org/10.3390/catal9090738 |
spellingShingle | TP Chemical technology Ayodele, Bamidele V. Siti Indati, Mustapa Alsaffar, May Ali Cheng, C. K. Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title | Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title_full | Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title_fullStr | Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title_full_unstemmed | Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title_short | Artificial intelligence modelling approach for the prediction of CO-rich hydrogen production rate from methane dry reforming |
title_sort | artificial intelligence modelling approach for the prediction of co rich hydrogen production rate from methane dry reforming |
topic | TP Chemical technology |
url | http://umpir.ump.edu.my/id/eprint/26852/1/Artificial%20intelligence%20modelling%20approach%20for%20the%20prediction%20of%20CO.pdf |
work_keys_str_mv | AT ayodelebamidelev artificialintelligencemodellingapproachforthepredictionofcorichhydrogenproductionratefrommethanedryreforming AT sitiindatimustapa artificialintelligencemodellingapproachforthepredictionofcorichhydrogenproductionratefrommethanedryreforming AT alsaffarmayali artificialintelligencemodellingapproachforthepredictionofcorichhydrogenproductionratefrommethanedryreforming AT chengck artificialintelligencemodellingapproachforthepredictionofcorichhydrogenproductionratefrommethanedryreforming |