DFP-growth: An efficient algorithm for mining frequent patterns in dynamic database
Mining frequent patterns in a large database is still an important and relevant topic in data mining. Nowadays, FP-Growth is one of the famous and benchmarked algorithms to mine the frequent patterns from FP-Tree data structure. However, the major drawback in FP-Growth is, the FP-Tree must be rebuil...
Päätekijät: | Zailani, Abdullah, Herawan, Tutut, Noraziah, Ahmad, Mustafa, Mat Deris |
---|---|
Aineistotyyppi: | Conference or Workshop Item |
Kieli: | English |
Julkaistu: |
Springer
2012
|
Aiheet: | |
Linkit: | http://umpir.ump.edu.my/id/eprint/27032/1/DFP-growth-%20An%20efficient%20algorithm%20for%20mining%20frequent%20patterns%20in%20dynamic%20database.pdf |
Samankaltaisia teoksia
-
EFP-M2: Efficient model for mining frequent patterns in transactional database
Tekijä: Herawan, Tutut, et al.
Julkaistu: (2012) -
Visualizing the construction of incremental Disorder Trie Itemset data structure (DOSTrieIT) for Frequent Pattern Tree (FP-Tree)
Tekijä: Zailani, Abdullah, et al.
Julkaistu: (2011) -
Mining Least Association Rules of Degree Level Programs Selected by Students
Tekijä: Zailani, Abdullah, et al.
Julkaistu: (2014) -
Mining significant association rules from educational data using critical relative support approach
Tekijä: Zailani, Abdullah, et al.
Julkaistu: (2011) -
Mining Indirect Least Association Rule from Students’ Examination Datasets
Tekijä: Zailani, Abdullah, et al.
Julkaistu: (2014)