A review of CFD modelling and performance metrics for osmotic membrane processes

Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use...

Full description

Bibliographic Details
Main Authors: Toh, K. Y., Liang, Yong Yeow, Lau, Woei Jye, Weihs, G. A. Fimbres
Format: Article
Language:English
Published: MDPI 2020
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/29658/1/A%20Review%20of%20CFD%20Modelling%20and%20Performance%20Metrics.pdf
Description
Summary:Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales.