The Classification of Wink-Based EEG Signals: The Identification of Significant Time-Domain Features
Brain-Computer Interface (BCI) has become popular with physically challenged individuals, particularly in enhancing their activities of daily living. Electroencephalogram (EEG) signals are used to control BCI-based devices. Nonetheless, it is worth noting that the use of a multitude of features may...
Main Authors: | Jothi Letchumy, Mahendra Kumar, Rashid, Mamunur, Musa, Rabiu Muazu, Mohd Azraai, Mohd Razman, Norizam, Sulaiman, Rozita, Jailani, Anwar, P. P. Abdul Majeed |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
Springer, Singapore
2021
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/30699/1/The%20Classification%20ofWink-Based%20EEG%20Signals1.pdf |
Similar Items
-
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021) -
The classification of EEG-based winking signals: a transfer learning and random forest pipeline
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021) -
An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2020) -
The Classification of Wink-Based EEG Signals: The identification on efficiency of transfer learning models by means of kNN classifier
by: Jothi Letchumy, Mahendra Kumar, et al.
Published: (2021) -
The Classification of Hallucination: The Identification of Significant Time-Domain EEG Signals
by: Chin, Hau Lim, et al.
Published: (2022)