An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals
Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogra...
Principais autores: | , , , , , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Penerbit UMP
2020
|
Assuntos: | |
Acesso em linha: | http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf |
_version_ | 1825813731205971968 |
---|---|
author | Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Musa, Rabiu Muazu Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed |
author_facet | Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Musa, Rabiu Muazu Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed |
author_sort | Jothi Letchumy, Mahendra Kumar |
collection | UMP |
description | Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features is often a laborious undertaking. The use of Transfer Learning (TL) has been demonstrated to be able to mitigate the issue. However, the employment of such a method towards BCI applications, particularly with regards to EEG signals are limited. The present study aims to assess the effectiveness of a number of DenseNet TL models, viz. DenseNet169, DenseNet121 and DenseNet201 in extracting features for the classification of wink-based EEG signals. The extracted features are then classified through an optimised Random Forest (RF) classifier. The raw EEG signals are transformed into a spectrogram image via Fast Fourier Transform (FFT) before it was fed into selected TL models. The dataset was split with a stratified ratio of 60:20:20 into train, test, and validation datasets, respectively. The hyperparameters of the RF model was optimised through the grid search approach that utilises the five-fold cross-validation technique. It was established from the study that amongst the DenseNet pipelines evaluated, the DenseNet169 performed the best with an overall validation and test accuracy of 89%. The findings of the present investigation could facilitate BCI applications, e.g., for a grasping exoskeleton. |
first_indexed | 2024-03-06T12:48:22Z |
format | Article |
id | UMPir30700 |
institution | Universiti Malaysia Pahang |
language | English |
last_indexed | 2024-03-06T12:48:22Z |
publishDate | 2020 |
publisher | Penerbit UMP |
record_format | dspace |
spelling | UMPir307002021-02-23T02:04:52Z http://umpir.ump.edu.my/id/eprint/30700/ An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Musa, Rabiu Muazu Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Brain Computer-Interfaces (BCI) offers a means of controlling prostheses for neurological disorder patients, primarily owing to their inability to control such devices due to their inherent physical limitations. More often than not, the control of such devices exploits the use of Electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features is often a laborious undertaking. The use of Transfer Learning (TL) has been demonstrated to be able to mitigate the issue. However, the employment of such a method towards BCI applications, particularly with regards to EEG signals are limited. The present study aims to assess the effectiveness of a number of DenseNet TL models, viz. DenseNet169, DenseNet121 and DenseNet201 in extracting features for the classification of wink-based EEG signals. The extracted features are then classified through an optimised Random Forest (RF) classifier. The raw EEG signals are transformed into a spectrogram image via Fast Fourier Transform (FFT) before it was fed into selected TL models. The dataset was split with a stratified ratio of 60:20:20 into train, test, and validation datasets, respectively. The hyperparameters of the RF model was optimised through the grid search approach that utilises the five-fold cross-validation technique. It was established from the study that amongst the DenseNet pipelines evaluated, the DenseNet169 performed the best with an overall validation and test accuracy of 89%. The findings of the present investigation could facilitate BCI applications, e.g., for a grasping exoskeleton. Penerbit UMP 2020 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf Jothi Letchumy, Mahendra Kumar and Rashid, Mamunur and Musa, Rabiu Muazu and Mohd Azraai, Mohd Razman and Norizam, Sulaiman and Rozita, Jailani and Anwar, P. P. Abdul Majeed (2020) An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals. Mekatronika - Journal of Intelligent Manufacturing & Mechatronics, 2 (1). pp. 1-7. ISSN 2637-0883. (Published) https://journal.ump.edu.my/mekatronika/article/view/5939/1099 https://doi.org/10.15282/mekatronika.v2i1.4881 |
spellingShingle | TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Musa, Rabiu Muazu Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title | An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title_full | An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title_fullStr | An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title_full_unstemmed | An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title_short | An evaluation of different fast fourier transform - transfer learning pipelines for the classification of wink-based EEG signals |
title_sort | evaluation of different fast fourier transform transfer learning pipelines for the classification of wink based eeg signals |
topic | TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering |
url | http://umpir.ump.edu.my/id/eprint/30700/2/An%20Evaluation%20of%20Different%20Fast%20Fourier%20Transform%20-%20Transfer%20Learning%20Pipelines%20for%20the%20Classification%20of%20Wink-based%20EEG%20Signals.pdf |
work_keys_str_mv | AT jothiletchumymahendrakumar anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT rashidmamunur anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT musarabiumuazu anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT mohdazraaimohdrazman anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT norizamsulaiman anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT rozitajailani anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT anwarppabdulmajeed anevaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT jothiletchumymahendrakumar evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT rashidmamunur evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT musarabiumuazu evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT mohdazraaimohdrazman evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT norizamsulaiman evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT rozitajailani evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals AT anwarppabdulmajeed evaluationofdifferentfastfouriertransformtransferlearningpipelinesfortheclassificationofwinkbasedeegsignals |