The classification of EEG-based winking signals: a transfer learning and random forest pipeline
Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2021
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/31406/1/The%20classification%20of%20EEG-based%20winking%20signals.pdf |
_version_ | 1825813856183648256 |
---|---|
author | Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Rabiu Muazu, Musa Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed |
author_facet | Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Rabiu Muazu, Musa Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed |
author_sort | Jothi Letchumy, Mahendra Kumar |
collection | UMP |
description | Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the classification of the signals is non-trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards BCI applications, particularly in regard to EEG signals, are somewhat limited. The present study aims to evaluate the effectiveness of different TL models in extracting features for the classification of wink-based EEG signals. The extracted features are classified by means of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into training, validation, and test datasets, respectively, via a stratified ratio of 60:20:20. The hyperparameters of the RF models were optimised through the grid search approach, in which the five-fold cross-validation technique was adopted. The optimised RF classifier performance was compared with the conventional TL-based CNN classifier performance. It was demonstrated from the study that the best TL model identified is the Inception ResNetV2 along with an optimised RF pipeline, as it was able to yield a classification accuracy of 100% on both the training and validation dataset. Therefore, it could be established from the study that a comparable classification efficacy is attainable via the Inception ResNetV2 with an optimised RF pipeline. It is envisaged that the implementation of the proposed architecture to a BCI system would potentially facilitate post-stroke patients to lead a better life quality. |
first_indexed | 2024-03-06T12:50:14Z |
format | Article |
id | UMPir31406 |
institution | Universiti Malaysia Pahang |
language | English |
last_indexed | 2024-03-06T12:50:14Z |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | dspace |
spelling | UMPir314062021-06-30T05:05:22Z http://umpir.ump.edu.my/id/eprint/31406/ The classification of EEG-based winking signals: a transfer learning and random forest pipeline Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Rabiu Muazu, Musa Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed TK Electrical engineering. Electronics Nuclear engineering TS Manufactures Brain Computer-Interface (BCI) technology plays a considerable role in the control of rehabilitation or peripheral devices for stroke patients. This is particularly due to their inability to control such devices from their inherent physical limitations after such an attack. More often than not, the control of such devices exploits electroencephalogram (EEG) signals. Nonetheless, it is worth noting that the extraction of the features and the classification of the signals is non-trivial for a successful BCI system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards BCI applications, particularly in regard to EEG signals, are somewhat limited. The present study aims to evaluate the effectiveness of different TL models in extracting features for the classification of wink-based EEG signals. The extracted features are classified by means of fine-tuned Random Forest (RF) classifier. The raw EEG signals are transformed into a scalogram image via Continuous Wavelet Transform (CWT) before it was fed into the TL models, namely InceptionV3, Inception ResNetV2, Xception and MobileNet. The dataset was divided into training, validation, and test datasets, respectively, via a stratified ratio of 60:20:20. The hyperparameters of the RF models were optimised through the grid search approach, in which the five-fold cross-validation technique was adopted. The optimised RF classifier performance was compared with the conventional TL-based CNN classifier performance. It was demonstrated from the study that the best TL model identified is the Inception ResNetV2 along with an optimised RF pipeline, as it was able to yield a classification accuracy of 100% on both the training and validation dataset. Therefore, it could be established from the study that a comparable classification efficacy is attainable via the Inception ResNetV2 with an optimised RF pipeline. It is envisaged that the implementation of the proposed architecture to a BCI system would potentially facilitate post-stroke patients to lead a better life quality. PeerJ Inc. 2021-03-31 Article PeerReviewed pdf en cc_by_4 http://umpir.ump.edu.my/id/eprint/31406/1/The%20classification%20of%20EEG-based%20winking%20signals.pdf Jothi Letchumy, Mahendra Kumar and Rashid, Mamunur and Rabiu Muazu, Musa and Mohd Azraai, Mohd Razman and Norizam, Sulaiman and Rozita, Jailani and Anwar, P. P. Abdul Majeed (2021) The classification of EEG-based winking signals: a transfer learning and random forest pipeline. PeerJ, 9 (e11182). pp. 1-16. ISSN 2167-8359. (Unpublished) (Unpublished) https://doi.org/10.7717/peerj.11182 https://doi.org/10.7717/peerj.11182 |
spellingShingle | TK Electrical engineering. Electronics Nuclear engineering TS Manufactures Jothi Letchumy, Mahendra Kumar Rashid, Mamunur Rabiu Muazu, Musa Mohd Azraai, Mohd Razman Norizam, Sulaiman Rozita, Jailani Anwar, P. P. Abdul Majeed The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title | The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title_full | The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title_fullStr | The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title_full_unstemmed | The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title_short | The classification of EEG-based winking signals: a transfer learning and random forest pipeline |
title_sort | classification of eeg based winking signals a transfer learning and random forest pipeline |
topic | TK Electrical engineering. Electronics Nuclear engineering TS Manufactures |
url | http://umpir.ump.edu.my/id/eprint/31406/1/The%20classification%20of%20EEG-based%20winking%20signals.pdf |
work_keys_str_mv | AT jothiletchumymahendrakumar theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rashidmamunur theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rabiumuazumusa theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT mohdazraaimohdrazman theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT norizamsulaiman theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rozitajailani theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT anwarppabdulmajeed theclassificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT jothiletchumymahendrakumar classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rashidmamunur classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rabiumuazumusa classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT mohdazraaimohdrazman classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT norizamsulaiman classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT rozitajailani classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline AT anwarppabdulmajeed classificationofeegbasedwinkingsignalsatransferlearningandrandomforestpipeline |