A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions

Descriptive data mining has been widely applied in hydrology as the regionalisation algorithms to identify the statistically homogeneous rainfall regions. However, previous studies employed regionalisation algorithms, namely agglomerative hierarchical and non-hierarchical regionalisation algorithms...

Full description

Bibliographic Details
Main Authors: Chuan, Zun Liang, Wan Nur Syahidah, Wan Yusoff, Azlyna, Senawi, Mohd Akramin, Mohd Romlay, Fam, Soo-Fen, Shinyie, Wendy Ling, Ken, Tan Lit
Format: Article
Language:English
Published: Universiti Putra Malaysia Press 2022
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/34949/1/A%20comparative%20effectiveness%20of%20hierarchical%20and%20nonhierarchical%20regionalisation%20algorithms.pdf
_version_ 1796995247114289152
author Chuan, Zun Liang
Wan Nur Syahidah, Wan Yusoff
Azlyna, Senawi
Mohd Akramin, Mohd Romlay
Fam, Soo-Fen
Shinyie, Wendy Ling
Ken, Tan Lit
author_facet Chuan, Zun Liang
Wan Nur Syahidah, Wan Yusoff
Azlyna, Senawi
Mohd Akramin, Mohd Romlay
Fam, Soo-Fen
Shinyie, Wendy Ling
Ken, Tan Lit
author_sort Chuan, Zun Liang
collection UMP
description Descriptive data mining has been widely applied in hydrology as the regionalisation algorithms to identify the statistically homogeneous rainfall regions. However, previous studies employed regionalisation algorithms, namely agglomerative hierarchical and non-hierarchical regionalisation algorithms requiring post-processing techniques to validate and interpret the analysis results. The main objective of this study is to investigate the effectiveness of the automated agglomerative hierarchical and non-hierarchical regionalisation algorithms in identifying the homogeneous rainfall regions based on a new statistically significant difference regionalised feature set. To pursue this objective, this study collected 20 historical monthly rainfall time-series data from the rain gauge stations located in the Kuantan district. In practice, these 20 rain gauge stations can be categorised into two statistically homogeneous rainfall regions, namely distinct spatial and temporal variability in the rainfall amounts. The results of the analysis show that Forgy K-means non-hierarchical (FKNH), HartiganWong K-means non-hierarchical (HKNH), and Lloyd K-means non-hierarchical (LKNH) regionalisation algorithms are superior to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Furthermore, FKNH, HKNH, and LKNH yielded the highest regionalisation accuracy compared to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Based on the regionalisation results yielded in this study, the reliability and accuracy that assessed the risk of extreme hydro-meteorological events for the Kuantan district can be improved. In particular, the regional quantile estimates can provide a more accurate estimation compared to at-site quantile estimates using an appropriate statistical distribution.
first_indexed 2024-03-06T12:59:30Z
format Article
id UMPir34949
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T12:59:30Z
publishDate 2022
publisher Universiti Putra Malaysia Press
record_format dspace
spelling UMPir349492022-11-08T04:53:04Z http://umpir.ump.edu.my/id/eprint/34949/ A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions Chuan, Zun Liang Wan Nur Syahidah, Wan Yusoff Azlyna, Senawi Mohd Akramin, Mohd Romlay Fam, Soo-Fen Shinyie, Wendy Ling Ken, Tan Lit QA Mathematics T Technology (General) TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery Descriptive data mining has been widely applied in hydrology as the regionalisation algorithms to identify the statistically homogeneous rainfall regions. However, previous studies employed regionalisation algorithms, namely agglomerative hierarchical and non-hierarchical regionalisation algorithms requiring post-processing techniques to validate and interpret the analysis results. The main objective of this study is to investigate the effectiveness of the automated agglomerative hierarchical and non-hierarchical regionalisation algorithms in identifying the homogeneous rainfall regions based on a new statistically significant difference regionalised feature set. To pursue this objective, this study collected 20 historical monthly rainfall time-series data from the rain gauge stations located in the Kuantan district. In practice, these 20 rain gauge stations can be categorised into two statistically homogeneous rainfall regions, namely distinct spatial and temporal variability in the rainfall amounts. The results of the analysis show that Forgy K-means non-hierarchical (FKNH), HartiganWong K-means non-hierarchical (HKNH), and Lloyd K-means non-hierarchical (LKNH) regionalisation algorithms are superior to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Furthermore, FKNH, HKNH, and LKNH yielded the highest regionalisation accuracy compared to other automated agglomerative hierarchical and non-hierarchical regionalisation algorithms. Based on the regionalisation results yielded in this study, the reliability and accuracy that assessed the risk of extreme hydro-meteorological events for the Kuantan district can be improved. In particular, the regional quantile estimates can provide a more accurate estimation compared to at-site quantile estimates using an appropriate statistical distribution. Universiti Putra Malaysia Press 2022-01 Article PeerReviewed pdf en cc_by_nc_nd_4 http://umpir.ump.edu.my/id/eprint/34949/1/A%20comparative%20effectiveness%20of%20hierarchical%20and%20nonhierarchical%20regionalisation%20algorithms.pdf Chuan, Zun Liang and Wan Nur Syahidah, Wan Yusoff and Azlyna, Senawi and Mohd Akramin, Mohd Romlay and Fam, Soo-Fen and Shinyie, Wendy Ling and Ken, Tan Lit (2022) A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions. Pertanika Journal of Science and Technology, 30 (1). pp. 319-342. ISSN 0128-7680. (Published) https://doi.org/10.47836/PJST.30.1.18 https://doi.org/10.47836/PJST.30.1.18
spellingShingle QA Mathematics
T Technology (General)
TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
Chuan, Zun Liang
Wan Nur Syahidah, Wan Yusoff
Azlyna, Senawi
Mohd Akramin, Mohd Romlay
Fam, Soo-Fen
Shinyie, Wendy Ling
Ken, Tan Lit
A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title_full A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title_fullStr A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title_full_unstemmed A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title_short A comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
title_sort comparative effectiveness of hierarchical and nonhierarchical regionalisation algorithms in regionalising the homogeneous rainfall regions
topic QA Mathematics
T Technology (General)
TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/34949/1/A%20comparative%20effectiveness%20of%20hierarchical%20and%20nonhierarchical%20regionalisation%20algorithms.pdf
work_keys_str_mv AT chuanzunliang acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT wannursyahidahwanyusoff acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT azlynasenawi acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT mohdakraminmohdromlay acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT famsoofen acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT shinyiewendyling acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT kentanlit acomparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT chuanzunliang comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT wannursyahidahwanyusoff comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT azlynasenawi comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT mohdakraminmohdromlay comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT famsoofen comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT shinyiewendyling comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions
AT kentanlit comparativeeffectivenessofhierarchicalandnonhierarchicalregionalisationalgorithmsinregionalisingthehomogeneousrainfallregions