A survey on artificial intelligence techniques for various wastewater treatment processes
Pollutant removal percentage is a key parameter for every WWTPs, and it is crucial to predict pollutant removal efficiency. The efficiency of pollutant removal processes can be increased with the help of modeling and its optimization. Statistical models are not practical enough for wastewater treatm...
Päätekijät: | Mohan, Varun Geetha, Mubarak-Ali, Al-Fahim, Vijayan, Bincy Lathakumari, Mohamed Ariff, Ameedeen |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English English |
Julkaistu: |
Penerbit UTEM
2023
|
Aiheet: | |
Linkit: | http://umpir.ump.edu.my/id/eprint/37142/1/A%20survey%20on%20artificial%20intelligence%20techniques%20for%20various%20wastewater%20treatment%20processes.pdf http://umpir.ump.edu.my/id/eprint/37142/7/A%20survey%20on%20artificial%20intelligence%20techniques%20for%20various%20wastewater.pdf |
Samankaltaisia teoksia
-
A review on predictive models designed from artificial intelligence techniques in the wastewater treatment process
Tekijä: Mohan, Varun Geetha, et al.
Julkaistu: (2022) -
A Systematic Survey on the Research of AI-predictive Models for Wastewater Treatment Processes
Tekijä: Mohan, Varun Geetha, et al.
Julkaistu: (2023) -
Predictive models using supervised neural network for pollutant removal efficiency in petrochemical wastewater treatment
Tekijä: Mohan, Varun Geetha, et al.
Julkaistu: (2022) -
Transforming education with cutting-edge technology
Tekijä: Mohamed Ariff, Ameedeen
Julkaistu: (2022) -
A supervised learning neural network approach for the prediction of supercapacitive energy storage materials
Tekijä: Varun, Geetha Mohan, et al.
Julkaistu: (2022)