Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval

Failure starts with creation of a crack, then the propagation of the crack and eventually the fracture of the material. Furthermore, material selection, geometry, processing and residual stresses are critical factors that may contribute to uncertainty and prospective failure mechanisms in engineerin...

Full description

Bibliographic Details
Main Authors: Husnain, M.M.N., Akramin, M. R.M., Shaari, M. S., Takahashi, Akiyuki, Bashiri, Abdullateef H., Alshoaibi, Abdulnaser M.
Format: Article
Language:English
Published: Sciendo 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/38325/1/Comparison%20of%20Monte%20Carlo%20and%20bootstrap%20analyses%20for%20residual%20life%20and%20confidence%20interval.pdf
_version_ 1796995846046220288
author Husnain, M.M.N.
Akramin, M. R.M.
Shaari, M. S.
Takahashi, Akiyuki
Bashiri, Abdullateef H.
Alshoaibi, Abdulnaser M.
author_facet Husnain, M.M.N.
Akramin, M. R.M.
Shaari, M. S.
Takahashi, Akiyuki
Bashiri, Abdullateef H.
Alshoaibi, Abdulnaser M.
author_sort Husnain, M.M.N.
collection UMP
description Failure starts with creation of a crack, then the propagation of the crack and eventually the fracture of the material. Furthermore, material selection, geometry, processing and residual stresses are critical factors that may contribute to uncertainty and prospective failure mechanisms in engineering. These issues may also arise in computational analysis, a problematic model, for instance, a three-dimensional surface fracture that may necessitate numerous degrees of freedom during analysis. However, considering the multiple incidents of material failure, detailed analysis and efforts to prevent premature material failure for safety and engineering integrity can be carried out. Thus, the objective of this study is to model crack growth in a surface-cracked structure. Aluminium alloy 7075-T6 was the material of interest in this study. The S-version finite element method (SFEM) was used to study fracture propagation. The numerical approach developed in this research was the probabilistic SFEM. Instead of mesh rebuilding, a typical finite element approach, the SFEM uses global-local element overlay method to create a fatigue crack growth model, which was then used for crack research. Empirical computation and previous experimental data were used to evaluate the stress intensity factor (SIF), surface crack growth and fatigue life. The SIF was determined using a virtual crack closure method (VCCM). In addition, the probabilistic approach is also a critical method to generate random parameters, such as Monte Carlo and bootstrap methods. The SIF, fatigue life and surface crack growth were validated and deemed to be within the acceptable range.
first_indexed 2024-03-06T13:08:17Z
format Article
id UMPir38325
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T13:08:17Z
publishDate 2023
publisher Sciendo
record_format dspace
spelling UMPir383252023-09-11T03:50:18Z http://umpir.ump.edu.my/id/eprint/38325/ Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval Husnain, M.M.N. Akramin, M. R.M. Shaari, M. S. Takahashi, Akiyuki Bashiri, Abdullateef H. Alshoaibi, Abdulnaser M. TJ Mechanical engineering and machinery TL Motor vehicles. Aeronautics. Astronautics Failure starts with creation of a crack, then the propagation of the crack and eventually the fracture of the material. Furthermore, material selection, geometry, processing and residual stresses are critical factors that may contribute to uncertainty and prospective failure mechanisms in engineering. These issues may also arise in computational analysis, a problematic model, for instance, a three-dimensional surface fracture that may necessitate numerous degrees of freedom during analysis. However, considering the multiple incidents of material failure, detailed analysis and efforts to prevent premature material failure for safety and engineering integrity can be carried out. Thus, the objective of this study is to model crack growth in a surface-cracked structure. Aluminium alloy 7075-T6 was the material of interest in this study. The S-version finite element method (SFEM) was used to study fracture propagation. The numerical approach developed in this research was the probabilistic SFEM. Instead of mesh rebuilding, a typical finite element approach, the SFEM uses global-local element overlay method to create a fatigue crack growth model, which was then used for crack research. Empirical computation and previous experimental data were used to evaluate the stress intensity factor (SIF), surface crack growth and fatigue life. The SIF was determined using a virtual crack closure method (VCCM). In addition, the probabilistic approach is also a critical method to generate random parameters, such as Monte Carlo and bootstrap methods. The SIF, fatigue life and surface crack growth were validated and deemed to be within the acceptable range. Sciendo 2023-03-01 Article PeerReviewed pdf en cc_by_nc_nd_4 http://umpir.ump.edu.my/id/eprint/38325/1/Comparison%20of%20Monte%20Carlo%20and%20bootstrap%20analyses%20for%20residual%20life%20and%20confidence%20interval.pdf Husnain, M.M.N. and Akramin, M. R.M. and Shaari, M. S. and Takahashi, Akiyuki and Bashiri, Abdullateef H. and Alshoaibi, Abdulnaser M. (2023) Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval. Materials Science- Poland, 41 (1). pp. 15-26. ISSN 2083-1331. (Published) https://doi.org/10.2478/msp-2023-0003 https://doi.org/10.2478/msp-2023-0003
spellingShingle TJ Mechanical engineering and machinery
TL Motor vehicles. Aeronautics. Astronautics
Husnain, M.M.N.
Akramin, M. R.M.
Shaari, M. S.
Takahashi, Akiyuki
Bashiri, Abdullateef H.
Alshoaibi, Abdulnaser M.
Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title_full Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title_fullStr Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title_full_unstemmed Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title_short Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
title_sort comparison of monte carlo and bootstrap analyses for residual life and confidence interval
topic TJ Mechanical engineering and machinery
TL Motor vehicles. Aeronautics. Astronautics
url http://umpir.ump.edu.my/id/eprint/38325/1/Comparison%20of%20Monte%20Carlo%20and%20bootstrap%20analyses%20for%20residual%20life%20and%20confidence%20interval.pdf
work_keys_str_mv AT husnainmmn comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval
AT akraminmrm comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval
AT shaarims comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval
AT takahashiakiyuki comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval
AT bashiriabdullateefh comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval
AT alshoaibiabdulnaserm comparisonofmontecarloandbootstrapanalysesforresiduallifeandconfidenceinterval