Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks

The stiffness and strength of the soil foundation govern the seismic safety of the structure. Estimating the influence of the soil crack on the nonlinear displacement of the soil foundation needs to be investigated in detail. In the present study, the cracked soil foundation subjected to the seismic...

Full description

Bibliographic Details
Main Authors: Namdar, Abdoullah, Mehran, Karimpour-Fard, Filippo, Berto, Nurmunira, Muhammad
Format: Article
Language:English
Published: Elsevier B.V. 2023
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/38343/1/1-s2.0-S2452321623004687-main.pdf
_version_ 1796995849049341952
author Namdar, Abdoullah
Mehran, Karimpour-Fard
Filippo, Berto
Nurmunira, Muhammad
author_facet Namdar, Abdoullah
Mehran, Karimpour-Fard
Filippo, Berto
Nurmunira, Muhammad
author_sort Namdar, Abdoullah
collection UMP
description The stiffness and strength of the soil foundation govern the seismic safety of the structure. Estimating the influence of the soil crack on the nonlinear displacement of the soil foundation needs to be investigated in detail. In the present study, the cracked soil foundation subjected to the seismic load has been simulated. The nonlinear extended finite element method (NXFEM) was applied for the prediction of the crack path on the soil foundation considering the mechanical properties of the soil as the main parameters. In addition, the impact of the crack morphology on the differential displacement of the soil model was investigated. To examine the validity and prediction of the displacement range of the cracked soil foundation, Artificial Neural Networks (ANNs) were employed by using MATLAB. Considering the results of the numerical simulation and ANNs were observed that there is a direct relationship between the morphology of the soil crack with the soil with displacement mechanism. The morphology of the soil crack has a considerable impact on the vibration mechanism of the soil mass subjecting to the seismic loading. The novelty of the present study is related to the prediction impact of crack morphology on cracked soil foundation differential displacement. The prediction crack morphology of the soil significantly supports geotechnical earthquake engineering design.
first_indexed 2024-03-06T13:08:19Z
format Article
id UMPir38343
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T13:08:19Z
publishDate 2023
publisher Elsevier B.V.
record_format dspace
spelling UMPir383432023-08-30T00:49:09Z http://umpir.ump.edu.my/id/eprint/38343/ Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks Namdar, Abdoullah Mehran, Karimpour-Fard Filippo, Berto Nurmunira, Muhammad TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery The stiffness and strength of the soil foundation govern the seismic safety of the structure. Estimating the influence of the soil crack on the nonlinear displacement of the soil foundation needs to be investigated in detail. In the present study, the cracked soil foundation subjected to the seismic load has been simulated. The nonlinear extended finite element method (NXFEM) was applied for the prediction of the crack path on the soil foundation considering the mechanical properties of the soil as the main parameters. In addition, the impact of the crack morphology on the differential displacement of the soil model was investigated. To examine the validity and prediction of the displacement range of the cracked soil foundation, Artificial Neural Networks (ANNs) were employed by using MATLAB. Considering the results of the numerical simulation and ANNs were observed that there is a direct relationship between the morphology of the soil crack with the soil with displacement mechanism. The morphology of the soil crack has a considerable impact on the vibration mechanism of the soil mass subjecting to the seismic loading. The novelty of the present study is related to the prediction impact of crack morphology on cracked soil foundation differential displacement. The prediction crack morphology of the soil significantly supports geotechnical earthquake engineering design. Elsevier B.V. 2023-07-21 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/38343/1/1-s2.0-S2452321623004687-main.pdf Namdar, Abdoullah and Mehran, Karimpour-Fard and Filippo, Berto and Nurmunira, Muhammad (2023) Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks. Procedia Structural Integrity, 47. pp. 636-645. ISSN 2452-3216. (Published) https://doi.org/10.1016/j.prostr.2023.07.058 10.1016/j.prostr.2023.07.058
spellingShingle TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
Namdar, Abdoullah
Mehran, Karimpour-Fard
Filippo, Berto
Nurmunira, Muhammad
Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title_full Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title_fullStr Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title_full_unstemmed Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title_short Prediction of the displacement mechanism of the cracked soil using NXFEM and Artificial Neural Networks
title_sort prediction of the displacement mechanism of the cracked soil using nxfem and artificial neural networks
topic TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/38343/1/1-s2.0-S2452321623004687-main.pdf
work_keys_str_mv AT namdarabdoullah predictionofthedisplacementmechanismofthecrackedsoilusingnxfemandartificialneuralnetworks
AT mehrankarimpourfard predictionofthedisplacementmechanismofthecrackedsoilusingnxfemandartificialneuralnetworks
AT filippoberto predictionofthedisplacementmechanismofthecrackedsoilusingnxfemandartificialneuralnetworks
AT nurmuniramuhammad predictionofthedisplacementmechanismofthecrackedsoilusingnxfemandartificialneuralnetworks