The role of catalyst synthesis on the enhancement of nickel praseodymium (III) oxide for the conversion of greenhouse gases to syngas

Catalytic methane (CH4) dry reforming (MDR) reaction proceeds with the formation of carbon; hence the effects of the catalyst preparation method on the type of carbon are worth investigating. This study investigated the performance of 20 wt% nickel praseodymium (III) oxide (20 wt% Ni/Pr2O3) catalyst...

Cijeli opis

Bibliografski detalji
Glavni autori: Osazuwa, Osarieme Uyi, Sumaiya, Zainal Abidin, Nurul Asmawati, Roslan, Fan, Xiaolei, Herma Dina, Setiabudi, Vo, Dai Viet N., Onwudili, Jude Azubuike
Format: Članak
Jezik:English
English
Izdano: Springer Science and Business Media Deutschland GmbH 2023
Teme:
Online pristup:http://umpir.ump.edu.my/id/eprint/40827/1/The%20role%20of%20catalyst%20synthesis%20on%20the%20enhancement%20of%20nickel.pdf
http://umpir.ump.edu.my/id/eprint/40827/2/The%20role%20of%20catalyst%20synthesis%20on%20the%20enhancement%20of%20nickel%20praseodymium%20%28III%29%20oxide%20for%20the%20conversion%20of%20greenhouse%20gases%20to%20syngas_ABS.pdf