Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst

Currently, syngas plays an important role in renewable and sustainable energy production. The idea of manufacturing syngas via bi-reforming methane, which involves the combination of methane (CH4), carbon dioxide (CO2), and steam, appears very promising. As a result, the goal of this research is to...

Full description

Bibliographic Details
Main Authors: Irna Haslina, Ibrahim, Nor Shafiqah, Mohd Nasir, Siti Nor Amira, Rosli, Hassan, Mohamed, Panpranot, Joongjai, Cuong Nguyen, Van, Sumaiya, Zainal Abidin
Format: Article
Language:English
English
Published: Institution of Chemical Engineers
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/41389/1/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming.pdf
http://umpir.ump.edu.my/id/eprint/41389/2/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming%20using%20CeO2%20promoted%20Cu_MnO2%20catalyst_ABS.pdf
_version_ 1811138415133982720
author Irna Haslina, Ibrahim
Nor Shafiqah, Mohd Nasir
Siti Nor Amira, Rosli
Hassan, Mohamed
Panpranot, Joongjai
Cuong Nguyen, Van
Sumaiya, Zainal Abidin
author_facet Irna Haslina, Ibrahim
Nor Shafiqah, Mohd Nasir
Siti Nor Amira, Rosli
Hassan, Mohamed
Panpranot, Joongjai
Cuong Nguyen, Van
Sumaiya, Zainal Abidin
author_sort Irna Haslina, Ibrahim
collection UMP
description Currently, syngas plays an important role in renewable and sustainable energy production. The idea of manufacturing syngas via bi-reforming methane, which involves the combination of methane (CH4), carbon dioxide (CO2), and steam, appears very promising. As a result, the goal of this research is to improve syngas output by improving process parameters in methane bi-reforming using a 3%Ce-15%Cu/MnO2 catalyst. Optimization analysis was performed using response surface methodology (RSM). The ultrasonic impregnation (UI) method was employed to synthesize the catalysts used in this study. Following that, the catalyst was characterized using several techniques such as Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD), and temperature programmed oxidation (TPO). The findings of the characterization show that the presence of CeO2 promoters has a dual effect on the size of CuO crystallites. Firstly, it reduces the size from 19.07 nm to 13.66 nm because to the dilutive effect generated by the inclusion of CeO2. Second, the presence of CeO2 promoter accelerates the transition from CuO to Cu0 metallic phase. Furthermore, the addition of CeO2 boosts the CH4 and CO2 conversion rates by 23.65% and 24.93%, respectively. As a result, the H2 yield increases significantly when compared to the unpromoted catalyst. The study investigates the influence of process parameters, specifically the reaction temperature (700–900℃), CO2 ratio (0.2–1), and gas hourly space velocity (GHSV) (16–36 L g cat−1 hr−1), on the conversion of CH4 and CO2, as well as the H2/CO ratio. The optimization study finds that the highest conversion rates for CH4 and CO2 are 78.32% and 72.45%, respectively, when the reaction temperature is 800 °C, the CO2 ratio is 0.6, and the gas hourly space velocity (GHSV) is 26 L g cat−1 hr−1. The optimum conditions result in the highest syngas ratio of 1.77. The results of the optimization are then assessed using the mean errors. The H2/CO ratio, as well as the average errors for CH4 and CO2 conversions, are discovered to be 0.15%, 0.95%, and 0%, respectively.
first_indexed 2024-09-25T03:49:49Z
format Article
id UMPir41389
institution Universiti Malaysia Pahang
language English
English
last_indexed 2024-09-25T03:49:49Z
publisher Institution of Chemical Engineers
record_format dspace
spelling UMPir413892024-07-01T01:24:35Z http://umpir.ump.edu.my/id/eprint/41389/ Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst Irna Haslina, Ibrahim Nor Shafiqah, Mohd Nasir Siti Nor Amira, Rosli Hassan, Mohamed Panpranot, Joongjai Cuong Nguyen, Van Sumaiya, Zainal Abidin QD Chemistry T Technology (General) TA Engineering (General). Civil engineering (General) TP Chemical technology Currently, syngas plays an important role in renewable and sustainable energy production. The idea of manufacturing syngas via bi-reforming methane, which involves the combination of methane (CH4), carbon dioxide (CO2), and steam, appears very promising. As a result, the goal of this research is to improve syngas output by improving process parameters in methane bi-reforming using a 3%Ce-15%Cu/MnO2 catalyst. Optimization analysis was performed using response surface methodology (RSM). The ultrasonic impregnation (UI) method was employed to synthesize the catalysts used in this study. Following that, the catalyst was characterized using several techniques such as Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption (TPD), and temperature programmed oxidation (TPO). The findings of the characterization show that the presence of CeO2 promoters has a dual effect on the size of CuO crystallites. Firstly, it reduces the size from 19.07 nm to 13.66 nm because to the dilutive effect generated by the inclusion of CeO2. Second, the presence of CeO2 promoter accelerates the transition from CuO to Cu0 metallic phase. Furthermore, the addition of CeO2 boosts the CH4 and CO2 conversion rates by 23.65% and 24.93%, respectively. As a result, the H2 yield increases significantly when compared to the unpromoted catalyst. The study investigates the influence of process parameters, specifically the reaction temperature (700–900℃), CO2 ratio (0.2–1), and gas hourly space velocity (GHSV) (16–36 L g cat−1 hr−1), on the conversion of CH4 and CO2, as well as the H2/CO ratio. The optimization study finds that the highest conversion rates for CH4 and CO2 are 78.32% and 72.45%, respectively, when the reaction temperature is 800 °C, the CO2 ratio is 0.6, and the gas hourly space velocity (GHSV) is 26 L g cat−1 hr−1. The optimum conditions result in the highest syngas ratio of 1.77. The results of the optimization are then assessed using the mean errors. The H2/CO ratio, as well as the average errors for CH4 and CO2 conversions, are discovered to be 0.15%, 0.95%, and 0%, respectively. Institution of Chemical Engineers Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/41389/1/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming.pdf pdf en http://umpir.ump.edu.my/id/eprint/41389/2/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming%20using%20CeO2%20promoted%20Cu_MnO2%20catalyst_ABS.pdf Irna Haslina, Ibrahim and Nor Shafiqah, Mohd Nasir and Siti Nor Amira, Rosli and Hassan, Mohamed and Panpranot, Joongjai and Cuong Nguyen, Van and Sumaiya, Zainal Abidin Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst. Chemical Engineering Research and Design. ISSN 0263-8762. (Published) https://doi.org/10.1016/j.cherd.2024.04.039 https://doi.org/10.1016/j.cherd.2024.04.039
spellingShingle QD Chemistry
T Technology (General)
TA Engineering (General). Civil engineering (General)
TP Chemical technology
Irna Haslina, Ibrahim
Nor Shafiqah, Mohd Nasir
Siti Nor Amira, Rosli
Hassan, Mohamed
Panpranot, Joongjai
Cuong Nguyen, Van
Sumaiya, Zainal Abidin
Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title_full Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title_fullStr Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title_full_unstemmed Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title_short Optimization of syngas production via methane bi-reforming using CeO2 promoted Cu/MnO2 catalyst
title_sort optimization of syngas production via methane bi reforming using ceo2 promoted cu mno2 catalyst
topic QD Chemistry
T Technology (General)
TA Engineering (General). Civil engineering (General)
TP Chemical technology
url http://umpir.ump.edu.my/id/eprint/41389/1/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming.pdf
http://umpir.ump.edu.my/id/eprint/41389/2/Optimization%20of%20syngas%20production%20via%20methane%20bi-reforming%20using%20CeO2%20promoted%20Cu_MnO2%20catalyst_ABS.pdf
work_keys_str_mv AT irnahaslinaibrahim optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT norshafiqahmohdnasir optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT sitinoramirarosli optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT hassanmohamed optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT panpranotjoongjai optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT cuongnguyenvan optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst
AT sumaiyazainalabidin optimizationofsyngasproductionviamethanebireformingusingceo2promotedcumno2catalyst