Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor
A clinker-based catalyst (CBC) was synthesized by incipient wetness impregnation with potassium hydroxide (10 wt%), then calcined at 700 ◦C. XRD and EDX analyses revealed that CaO (66.61 wt%) and Ca (34.63 wt%) are the primary constituents of the CBC, with the main crystalline phases identified as C...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
Elsevier Ltd
2025
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/43578/1/Gimbun%20jece%202025.pdf http://umpir.ump.edu.my/id/eprint/43578/7/Elucidating%20the%20clinker-based%20catalyst%20deactivation%20for%20biodiesel%20production%20in%20a%20continuous%20microwave-assisted%20reactor_abs.pdf |
_version_ | 1824451751403585536 |
---|---|
author | Gimbun, Jolius Mohd Affandi, Mohd Ali Cheng, Cheng Kui Sumaiya, Zainal Abidin Maizirwan, Mel Chin, Siew Choo |
author_facet | Gimbun, Jolius Mohd Affandi, Mohd Ali Cheng, Cheng Kui Sumaiya, Zainal Abidin Maizirwan, Mel Chin, Siew Choo |
author_sort | Gimbun, Jolius |
collection | UMP |
description | A clinker-based catalyst (CBC) was synthesized by incipient wetness impregnation with potassium hydroxide (10 wt%), then calcined at 700 ◦C. XRD and EDX analyses revealed that CaO (66.61 wt%) and Ca (34.63 wt%) are the primary constituents of the CBC, with the main crystalline phases identified as Ca2Al0.67Mn0.33FeO5 (monoclinic) and Ca3SiO5 (orthorhombic). This catalyst was effectively employed for the transesterification of waste cooking oil (WCO) in a continuous microwave-assisted reactor (CMAR), achieving a fatty acid methyl ester (FAME) yield of over 92.8 % under optimal conditions: a methanol to oil molar ratio of 12:1, a catalyst concentration of 5 wt% (catalyst/oil), and a reaction temperature of 65 ◦C. Moisture in CBC can reduce its performance by over 36 %. The catalyst was recovered and reused four times with minimal loss of activity. Analysis of the reused catalyst indicated that the reduction in catalytic performance was due to leaching, catalyst poisoning, and a decrease in surface area and porosity. Due to its reusability, the clinker-based catalyst has the potential to replace homogeneous catalysts, thereby reducing biodiesel production costs. |
first_indexed | 2025-02-19T02:39:36Z |
format | Article |
id | UMPir43578 |
institution | Universiti Malaysia Pahang |
language | English English |
last_indexed | 2025-02-19T02:39:36Z |
publishDate | 2025 |
publisher | Elsevier Ltd |
record_format | dspace |
spelling | UMPir435782025-01-15T06:29:44Z http://umpir.ump.edu.my/id/eprint/43578/ Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor Gimbun, Jolius Mohd Affandi, Mohd Ali Cheng, Cheng Kui Sumaiya, Zainal Abidin Maizirwan, Mel Chin, Siew Choo QD Chemistry T Technology (General) TA Engineering (General). Civil engineering (General) TD Environmental technology. Sanitary engineering TP Chemical technology A clinker-based catalyst (CBC) was synthesized by incipient wetness impregnation with potassium hydroxide (10 wt%), then calcined at 700 ◦C. XRD and EDX analyses revealed that CaO (66.61 wt%) and Ca (34.63 wt%) are the primary constituents of the CBC, with the main crystalline phases identified as Ca2Al0.67Mn0.33FeO5 (monoclinic) and Ca3SiO5 (orthorhombic). This catalyst was effectively employed for the transesterification of waste cooking oil (WCO) in a continuous microwave-assisted reactor (CMAR), achieving a fatty acid methyl ester (FAME) yield of over 92.8 % under optimal conditions: a methanol to oil molar ratio of 12:1, a catalyst concentration of 5 wt% (catalyst/oil), and a reaction temperature of 65 ◦C. Moisture in CBC can reduce its performance by over 36 %. The catalyst was recovered and reused four times with minimal loss of activity. Analysis of the reused catalyst indicated that the reduction in catalytic performance was due to leaching, catalyst poisoning, and a decrease in surface area and porosity. Due to its reusability, the clinker-based catalyst has the potential to replace homogeneous catalysts, thereby reducing biodiesel production costs. Elsevier Ltd 2025-02 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/43578/1/Gimbun%20jece%202025.pdf pdf en http://umpir.ump.edu.my/id/eprint/43578/7/Elucidating%20the%20clinker-based%20catalyst%20deactivation%20for%20biodiesel%20production%20in%20a%20continuous%20microwave-assisted%20reactor_abs.pdf Gimbun, Jolius and Mohd Affandi, Mohd Ali and Cheng, Cheng Kui and Sumaiya, Zainal Abidin and Maizirwan, Mel and Chin, Siew Choo (2025) Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor. Journal of Environmental Chemical Engineering, 13 (115186). pp. 1-11. ISSN 2213-3437. (Published) https://doi.org/10.1016/j.jece.2024.115186 10.1016/j.jece.2024.115186 |
spellingShingle | QD Chemistry T Technology (General) TA Engineering (General). Civil engineering (General) TD Environmental technology. Sanitary engineering TP Chemical technology Gimbun, Jolius Mohd Affandi, Mohd Ali Cheng, Cheng Kui Sumaiya, Zainal Abidin Maizirwan, Mel Chin, Siew Choo Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title | Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title_full | Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title_fullStr | Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title_full_unstemmed | Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title_short | Elucidating the clinker-based catalyst deactivation for biodiesel production in a continuous microwave-assisted reactor |
title_sort | elucidating the clinker based catalyst deactivation for biodiesel production in a continuous microwave assisted reactor |
topic | QD Chemistry T Technology (General) TA Engineering (General). Civil engineering (General) TD Environmental technology. Sanitary engineering TP Chemical technology |
url | http://umpir.ump.edu.my/id/eprint/43578/1/Gimbun%20jece%202025.pdf http://umpir.ump.edu.my/id/eprint/43578/7/Elucidating%20the%20clinker-based%20catalyst%20deactivation%20for%20biodiesel%20production%20in%20a%20continuous%20microwave-assisted%20reactor_abs.pdf |
work_keys_str_mv | AT gimbunjolius elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor AT mohdaffandimohdali elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor AT chengchengkui elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor AT sumaiyazainalabidin elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor AT maizirwanmel elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor AT chinsiewchoo elucidatingtheclinkerbasedcatalystdeactivationforbiodieselproductioninacontinuousmicrowaveassistedreactor |