Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition

Optimum thermal annealing process operating condition for nanostructured porous silicon (nPSi) by using radial basis function neural network (RBFNN) was proposed. The nanostructured porous silicon (nPSi) layer samples prepared by electrochemical etching process (EC) of p-type silicon wafers under di...

Full description

Bibliographic Details
Main Authors: M. M., Yusoff, Mehdi, Qasim, Al-Dabbagh, Jinan B., Abdalla, Ahmed N., Hegde, Gurumurthy
Format: Article
Language:English
Published: scientific.net 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/4705/1/Radial_Basis_Function_Neural_Network_Model_for_Optimizing_Thermal_Annealing_Process_Operating_Condition.pdf
_version_ 1796989852776923136
author M. M., Yusoff
Mehdi, Qasim
Al-Dabbagh, Jinan B.
Abdalla, Ahmed N.
Hegde, Gurumurthy
author_facet M. M., Yusoff
Mehdi, Qasim
Al-Dabbagh, Jinan B.
Abdalla, Ahmed N.
Hegde, Gurumurthy
author_sort M. M., Yusoff
collection UMP
description Optimum thermal annealing process operating condition for nanostructured porous silicon (nPSi) by using radial basis function neural network (RBFNN) was proposed. The nanostructured porous silicon (nPSi) layer samples prepared by electrochemical etching process (EC) of p-type silicon wafers under different operatingconditions, such as varyingetchingtime (Et), annealing temperature (AT), and annealing time (At). The electrical properties of nPSi show an enhancement with thermal treatment.Simulation result shows that the proposed model can be used in the experimental results in this operating condition with acceptable small error. This model can be used in nanotechnology based photonic devices and gas sensors.
first_indexed 2024-03-06T11:43:12Z
format Article
id UMPir4705
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T11:43:12Z
publishDate 2013
publisher scientific.net
record_format dspace
spelling UMPir47052018-10-03T07:38:10Z http://umpir.ump.edu.my/id/eprint/4705/ Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition M. M., Yusoff Mehdi, Qasim Al-Dabbagh, Jinan B. Abdalla, Ahmed N. Hegde, Gurumurthy Q Science (General) Optimum thermal annealing process operating condition for nanostructured porous silicon (nPSi) by using radial basis function neural network (RBFNN) was proposed. The nanostructured porous silicon (nPSi) layer samples prepared by electrochemical etching process (EC) of p-type silicon wafers under different operatingconditions, such as varyingetchingtime (Et), annealing temperature (AT), and annealing time (At). The electrical properties of nPSi show an enhancement with thermal treatment.Simulation result shows that the proposed model can be used in the experimental results in this operating condition with acceptable small error. This model can be used in nanotechnology based photonic devices and gas sensors. scientific.net 2013-05 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/4705/1/Radial_Basis_Function_Neural_Network_Model_for_Optimizing_Thermal_Annealing_Process_Operating_Condition.pdf M. M., Yusoff and Mehdi, Qasim and Al-Dabbagh, Jinan B. and Abdalla, Ahmed N. and Hegde, Gurumurthy (2013) Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition. Nano Hybrids , 4. pp. 21-31. ISSN 2234-9871. (Published) http://dx.doi.org/10.4028/www.scientific.net/NH.4.21 DOI: 10.4028/www.scientific.net/NH.4.21
spellingShingle Q Science (General)
M. M., Yusoff
Mehdi, Qasim
Al-Dabbagh, Jinan B.
Abdalla, Ahmed N.
Hegde, Gurumurthy
Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title_full Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title_fullStr Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title_full_unstemmed Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title_short Radial Basis Function Neural Network Model for Optimizing Thermal Annealing Process Operating Condition
title_sort radial basis function neural network model for optimizing thermal annealing process operating condition
topic Q Science (General)
url http://umpir.ump.edu.my/id/eprint/4705/1/Radial_Basis_Function_Neural_Network_Model_for_Optimizing_Thermal_Annealing_Process_Operating_Condition.pdf
work_keys_str_mv AT mmyusoff radialbasisfunctionneuralnetworkmodelforoptimizingthermalannealingprocessoperatingcondition
AT mehdiqasim radialbasisfunctionneuralnetworkmodelforoptimizingthermalannealingprocessoperatingcondition
AT aldabbaghjinanb radialbasisfunctionneuralnetworkmodelforoptimizingthermalannealingprocessoperatingcondition
AT abdallaahmedn radialbasisfunctionneuralnetworkmodelforoptimizingthermalannealingprocessoperatingcondition
AT hegdegurumurthy radialbasisfunctionneuralnetworkmodelforoptimizingthermalannealingprocessoperatingcondition