Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties

In this research, the production of biodegradable plastic food packaging from biopolymers poly (lactic acid) (PLA), chitosan and polyethylene glycol (PEG) was investigated. In addition, the objective for this research also wants to study the mechanical properties of biofilms at different percentage...

Full description

Bibliographic Details
Main Author: Nisham Asmeer, Roslan
Format: Undergraduates Project Papers
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/7170/1/12.Biodegradable%20films%20from%20poly%20%28lactic%20acid%29%20%28PLA%29-chitosan-polyethylene%20glycol%20%28PEG%29%20%20fabrication%20and%20evaluation%20of%20mechanical%20properties.pdf
_version_ 1796990227238092800
author Nisham Asmeer, Roslan
author_facet Nisham Asmeer, Roslan
author_sort Nisham Asmeer, Roslan
collection UMP
description In this research, the production of biodegradable plastic food packaging from biopolymers poly (lactic acid) (PLA), chitosan and polyethylene glycol (PEG) was investigated. In addition, the objective for this research also wants to study the mechanical properties of biofilms at different percentage of weight of polylactic acid, chitosan, and polyethylene glycol (PEG). The biodegradable plastic food packaging was prepared by blending the films based on these four main chemicals (PLA, chitosan, PEG) and 30 ml of silver nanopaticles for every blend of biofilms. Then tested the films with universal testing machine according to American Standard Test Method (ASTM D882) to investigate the mechanical properties (tensile and elongation) with 1 mm thickness film. Then, the mechanical properties of biodegradable food packaging films optimized by changing the parameters of percentage polyethylene glycol (PEG) and ratio of chitosan to PLA using Response Surface Method (RSM) in order to obtain the good biodegradable food packaging films. Degradation rate test has been determined by using the soil burial degradation rate method by burial the blend films for 14 days. The results show that, at the optimum condition, the tensile strength reached the maximum value of 10.573 MPa when the PEG is 17.6 % and PLA is 71.21%. For the elongation at break point, the optimum condition for the elongation at the break point reached the maximum value of 68% when the PEG is 22.07% and PLA is 50%. For the biodegradation rate indicate that the highest value of the chitosan will have the highest degradation rate among the prepared biofilms. As a conclusion the blend films produces will have a good mechanical properties that and can degraded easily.
first_indexed 2024-03-06T11:48:27Z
format Undergraduates Project Papers
id UMPir7170
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T11:48:27Z
publishDate 2013
record_format dspace
spelling UMPir71702023-05-23T10:20:32Z http://umpir.ump.edu.my/id/eprint/7170/ Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties Nisham Asmeer, Roslan QR Microbiology In this research, the production of biodegradable plastic food packaging from biopolymers poly (lactic acid) (PLA), chitosan and polyethylene glycol (PEG) was investigated. In addition, the objective for this research also wants to study the mechanical properties of biofilms at different percentage of weight of polylactic acid, chitosan, and polyethylene glycol (PEG). The biodegradable plastic food packaging was prepared by blending the films based on these four main chemicals (PLA, chitosan, PEG) and 30 ml of silver nanopaticles for every blend of biofilms. Then tested the films with universal testing machine according to American Standard Test Method (ASTM D882) to investigate the mechanical properties (tensile and elongation) with 1 mm thickness film. Then, the mechanical properties of biodegradable food packaging films optimized by changing the parameters of percentage polyethylene glycol (PEG) and ratio of chitosan to PLA using Response Surface Method (RSM) in order to obtain the good biodegradable food packaging films. Degradation rate test has been determined by using the soil burial degradation rate method by burial the blend films for 14 days. The results show that, at the optimum condition, the tensile strength reached the maximum value of 10.573 MPa when the PEG is 17.6 % and PLA is 71.21%. For the elongation at break point, the optimum condition for the elongation at the break point reached the maximum value of 68% when the PEG is 22.07% and PLA is 50%. For the biodegradation rate indicate that the highest value of the chitosan will have the highest degradation rate among the prepared biofilms. As a conclusion the blend films produces will have a good mechanical properties that and can degraded easily. 2013 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/7170/1/12.Biodegradable%20films%20from%20poly%20%28lactic%20acid%29%20%28PLA%29-chitosan-polyethylene%20glycol%20%28PEG%29%20%20fabrication%20and%20evaluation%20of%20mechanical%20properties.pdf Nisham Asmeer, Roslan (2013) Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.
spellingShingle QR Microbiology
Nisham Asmeer, Roslan
Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title_full Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title_fullStr Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title_full_unstemmed Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title_short Biodegradable films from poly (lactic acid) (PLA)-chitosan-polyethylene glycol (PEG) : fabrication and evaluation of mechanical properties
title_sort biodegradable films from poly lactic acid pla chitosan polyethylene glycol peg fabrication and evaluation of mechanical properties
topic QR Microbiology
url http://umpir.ump.edu.my/id/eprint/7170/1/12.Biodegradable%20films%20from%20poly%20%28lactic%20acid%29%20%28PLA%29-chitosan-polyethylene%20glycol%20%28PEG%29%20%20fabrication%20and%20evaluation%20of%20mechanical%20properties.pdf
work_keys_str_mv AT nishamasmeerroslan biodegradablefilmsfrompolylacticacidplachitosanpolyethyleneglycolpegfabricationandevaluationofmechanicalproperties