Experimental and numerical investigation on part thicknesses effects in tailor welded blank process

Tailor welded blank (TWB) is increasingly popular in producing sheet metal components especially for automotive industry. TWBs is employed by using dissimilar material welding which is mainly affected blank thickness and type of material used. This study is focused on the part thickness effects usin...

Full description

Bibliographic Details
Main Author: Anas Basri, Musthafa
Format: Undergraduates Project Papers
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/8323/1/Experimental%20and%20numerical%20investigation%20on%20part%20thicknesses%20effects.pdf
_version_ 1796990420532592640
author Anas Basri, Musthafa
author_facet Anas Basri, Musthafa
author_sort Anas Basri, Musthafa
collection UMP
description Tailor welded blank (TWB) is increasingly popular in producing sheet metal components especially for automotive industry. TWBs is employed by using dissimilar material welding which is mainly affected blank thickness and type of material used. This study is focused on the part thickness effects using experimental and numerical method. Thickness of tailor welded sheets plays an important role in sheet metal forming since fracture, wrinkling and weak spots are strongly influenced by material behaviour. In this study, simple heat transfer testing equipment is fabricated to conduct heat transfer experiment. A numerical and experimental study was carried out to investigate the heat transfer characteristic for different thickness of common used type of TWB material. The investigated thicknesses of aluminum 1100 are 1, 2 and 3 mm. Low heat capacity laser is used to measure the temperature distribution in experiment and used to validate FE model. A finite element model (2D) of aluminum 1100 is applied to simulate static heat distribution inside the material for different part thicknesses, heating position and amount of heat. The results shown that the heating region for thicker plate for combination 3 mm with 1 mm is 60 % wider compare to thinner plate with 40 %. Different combination of material thickness requires different heating positions and increasing the thickness of the material is increases the use of heat flux
first_indexed 2024-03-06T11:51:18Z
format Undergraduates Project Papers
id UMPir8323
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T11:51:18Z
publishDate 2013
record_format dspace
spelling UMPir83232023-03-23T06:24:33Z http://umpir.ump.edu.my/id/eprint/8323/ Experimental and numerical investigation on part thicknesses effects in tailor welded blank process Anas Basri, Musthafa TA Engineering (General). Civil engineering (General) TJ Mechanical engineering and machinery Tailor welded blank (TWB) is increasingly popular in producing sheet metal components especially for automotive industry. TWBs is employed by using dissimilar material welding which is mainly affected blank thickness and type of material used. This study is focused on the part thickness effects using experimental and numerical method. Thickness of tailor welded sheets plays an important role in sheet metal forming since fracture, wrinkling and weak spots are strongly influenced by material behaviour. In this study, simple heat transfer testing equipment is fabricated to conduct heat transfer experiment. A numerical and experimental study was carried out to investigate the heat transfer characteristic for different thickness of common used type of TWB material. The investigated thicknesses of aluminum 1100 are 1, 2 and 3 mm. Low heat capacity laser is used to measure the temperature distribution in experiment and used to validate FE model. A finite element model (2D) of aluminum 1100 is applied to simulate static heat distribution inside the material for different part thicknesses, heating position and amount of heat. The results shown that the heating region for thicker plate for combination 3 mm with 1 mm is 60 % wider compare to thinner plate with 40 %. Different combination of material thickness requires different heating positions and increasing the thickness of the material is increases the use of heat flux 2013-06 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/8323/1/Experimental%20and%20numerical%20investigation%20on%20part%20thicknesses%20effects.pdf Anas Basri, Musthafa (2013) Experimental and numerical investigation on part thicknesses effects in tailor welded blank process. Faculty of Mechanical Engineering, Universiti Malaysia Pahang.
spellingShingle TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
Anas Basri, Musthafa
Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title_full Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title_fullStr Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title_full_unstemmed Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title_short Experimental and numerical investigation on part thicknesses effects in tailor welded blank process
title_sort experimental and numerical investigation on part thicknesses effects in tailor welded blank process
topic TA Engineering (General). Civil engineering (General)
TJ Mechanical engineering and machinery
url http://umpir.ump.edu.my/id/eprint/8323/1/Experimental%20and%20numerical%20investigation%20on%20part%20thicknesses%20effects.pdf
work_keys_str_mv AT anasbasrimusthafa experimentalandnumericalinvestigationonpartthicknesseseffectsintailorweldedblankprocess