Protein purification by using immobilized metal ion affinity (IMA) adsorbent

Effective separation and purification of proteins has been an important issue in the biomedical and pharmaceutical industries. A novel protein adsorption has been developed in biotechnology to achieve highly efficient and economical separation processes. Application in separation and purification pr...

Full description

Bibliographic Details
Main Author: Fidelia Sawai, anak Michael Mulok
Format: Undergraduates Project Papers
Language:English
Published: 2009
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/871/1/Protein%20purification%20by%20using%20immobilized%20metal%20ion%20affinity%20%28IMA%29%20adsorbent.pdf
_version_ 1825808827566522368
author Fidelia Sawai, anak Michael Mulok
author_facet Fidelia Sawai, anak Michael Mulok
author_sort Fidelia Sawai, anak Michael Mulok
collection UMP
description Effective separation and purification of proteins has been an important issue in the biomedical and pharmaceutical industries. A novel protein adsorption has been developed in biotechnology to achieve highly efficient and economical separation processes. Application in separation and purification processes often used the ability of zeolites and other molecular sieves to exclude molecules too large to enter the pores and admit smaller ones. In this study, two zeolites which are H-Y and H-Beta have been modified by adding a type of metal into each zeolite to enhance the performance of the zeolites. Three types of metals were used. They were nickel oxide, ferum oxide and zirconium oxide. The zeolite is used as an immobilized metal ion affinity stationary phase for protein purification. The adsorption of Bovine Serum Albumin (BSA) protein using modified zeolites was studied. The effect of pH on adsorption capacity was studied at three different pHs, namely 3, 5 and 8. It is found that the adsorption capacity is the highest at pH 5. Increase in pH higher than the pI leads to the decrease in the adsorption capacity. This is caused by electrostatics repulsion between protein and the surface of adsorbent. Bovine serum albumin concentration was analyzed by UV/VIS Spectrophotometer. It is obvious that as the concentration is higher, the adsorption of Bovine Serum Albumin (BSA) protein is also higher. This is because as the sample is more concentrated, it contained more protein so the adsorption will also be increased. It can be concluded that the most efficient zeolite is H-Beta combined with zirconium oxide. Ismail et al. (2005) has said that the molecular sieve H-Beta zeolite has been explored for its ability to adsorb proteins from aqueous solution in batch experiment. Zirconium oxide is the most efficient metal compared to nickel oxide and ferum oxide. The adsorption isotherms are confirmed to be ideal to the Langmuir model.
first_indexed 2024-03-06T11:35:23Z
format Undergraduates Project Papers
id UMPir871
institution Universiti Malaysia Pahang
language English
last_indexed 2024-03-06T11:35:23Z
publishDate 2009
record_format dspace
spelling UMPir8712023-11-16T07:31:27Z http://umpir.ump.edu.my/id/eprint/871/ Protein purification by using immobilized metal ion affinity (IMA) adsorbent Fidelia Sawai, anak Michael Mulok TP Chemical technology Effective separation and purification of proteins has been an important issue in the biomedical and pharmaceutical industries. A novel protein adsorption has been developed in biotechnology to achieve highly efficient and economical separation processes. Application in separation and purification processes often used the ability of zeolites and other molecular sieves to exclude molecules too large to enter the pores and admit smaller ones. In this study, two zeolites which are H-Y and H-Beta have been modified by adding a type of metal into each zeolite to enhance the performance of the zeolites. Three types of metals were used. They were nickel oxide, ferum oxide and zirconium oxide. The zeolite is used as an immobilized metal ion affinity stationary phase for protein purification. The adsorption of Bovine Serum Albumin (BSA) protein using modified zeolites was studied. The effect of pH on adsorption capacity was studied at three different pHs, namely 3, 5 and 8. It is found that the adsorption capacity is the highest at pH 5. Increase in pH higher than the pI leads to the decrease in the adsorption capacity. This is caused by electrostatics repulsion between protein and the surface of adsorbent. Bovine serum albumin concentration was analyzed by UV/VIS Spectrophotometer. It is obvious that as the concentration is higher, the adsorption of Bovine Serum Albumin (BSA) protein is also higher. This is because as the sample is more concentrated, it contained more protein so the adsorption will also be increased. It can be concluded that the most efficient zeolite is H-Beta combined with zirconium oxide. Ismail et al. (2005) has said that the molecular sieve H-Beta zeolite has been explored for its ability to adsorb proteins from aqueous solution in batch experiment. Zirconium oxide is the most efficient metal compared to nickel oxide and ferum oxide. The adsorption isotherms are confirmed to be ideal to the Langmuir model. 2009-05 Undergraduates Project Papers NonPeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/871/1/Protein%20purification%20by%20using%20immobilized%20metal%20ion%20affinity%20%28IMA%29%20adsorbent.pdf Fidelia Sawai, anak Michael Mulok (2009) Protein purification by using immobilized metal ion affinity (IMA) adsorbent. Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang.
spellingShingle TP Chemical technology
Fidelia Sawai, anak Michael Mulok
Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title_full Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title_fullStr Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title_full_unstemmed Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title_short Protein purification by using immobilized metal ion affinity (IMA) adsorbent
title_sort protein purification by using immobilized metal ion affinity ima adsorbent
topic TP Chemical technology
url http://umpir.ump.edu.my/id/eprint/871/1/Protein%20purification%20by%20using%20immobilized%20metal%20ion%20affinity%20%28IMA%29%20adsorbent.pdf
work_keys_str_mv AT fideliasawaianakmichaelmulok proteinpurificationbyusingimmobilizedmetalionaffinityimaadsorbent