Summary: | In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-pressure extrusion cylinder. Comparative analysis of an ultrahigh-pressure extrusion structure was carried out. The mathematical optimization model is established based on the mechanical model, and the ultimate bearing capacities of the schemes are compared. Additionally, the winding mode and the number of core layers of the extrusion cylinder are compared and analyzed, which provides a theoretical basis for the parameter design of the steel-wire-winding ultrahigh-pressure extrusion cylinder. This work holds good theoretical significance and practical value for the promotion and application of ultrahigh-pressure hydrostatic extrusion technology.
|