Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV

The boundary layer is the main source of frictional resistance in gap flow, and the study of the flow structure characteristics of the gap flow boundary layer is of great significance for the study of gap flow theory. In this study, the PIV technique was utilized to experimentally investigate the ga...

Full description

Bibliographic Details
Main Authors: Lei Sun, Xihuan Sun, Yongye Li, Cheng Wang
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/22/3989
_version_ 1797457443636117504
author Lei Sun
Xihuan Sun
Yongye Li
Cheng Wang
author_facet Lei Sun
Xihuan Sun
Yongye Li
Cheng Wang
author_sort Lei Sun
collection DOAJ
description The boundary layer is the main source of frictional resistance in gap flow, and the study of the flow structure characteristics of the gap flow boundary layer is of great significance for the study of gap flow theory. In this study, the PIV technique was utilized to experimentally investigate the gap flow boundary layers with Reynolds numbers of 16,587–56,870 and gap ratios of 0.6–0.8. The characteristics of the wall friction velocity, the boundary layer thickness, and the wall function of the gap flow boundary layer were analyzed, and the influences of the mean velocity of the gap flow and the gap ratio on the flow structure characteristics of the boundary layer were explored. The results show that using PIV to measure the velocity profile in the viscous sub-layer to solve for the wall friction velocity had good precision. The boundary layer thickness was inversely proportional to the mean velocity of the gap flow and the gap ratio. The wall functions of the boundary layer were as follows: in the viscous sub-layer (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo><</mo></mrow></semantics></math></inline-formula> 5.5), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>; in the transition layer (5.5 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo><</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo><</mo></mrow></semantics></math></inline-formula> 26), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>0.071</mn></mrow></mfrac><mi>t</mi><mi>a</mi><mi>n</mi><mi>h</mi><mfenced separators="|"><mrow><mn>0.071</mn><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfenced></mrow></semantics></math></inline-formula>; and in the logarithmic layer (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>></mo></mrow></semantics></math></inline-formula> 26), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mn>2.78</mn><mi>l</mi><mi>n</mi><mfenced separators="|"><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfenced><mo>+</mo><mn>3.8</mn></mrow></semantics></math></inline-formula>. The thickness of the logarithmic layer was proportional to the mean velocity of the gap flow and inversely proportional to the gap ratio. The inner region of the boundary layer extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo><</mo></mrow></semantics></math></inline-formula> 0.18<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo><</mo></mrow></semantics></math></inline-formula> 0.13(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi></mrow></semantics></math></inline-formula>/2).
first_indexed 2024-03-09T16:22:15Z
format Article
id doaj.art-000ecca8cd0244be8a38cf8017c166e6
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-09T16:22:15Z
publishDate 2023-11-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-000ecca8cd0244be8a38cf8017c166e62023-11-24T15:11:32ZengMDPI AGWater2073-44412023-11-011522398910.3390/w15223989Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIVLei Sun0Xihuan Sun1Yongye Li2Cheng Wang3College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaCollege of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, ChinaThe boundary layer is the main source of frictional resistance in gap flow, and the study of the flow structure characteristics of the gap flow boundary layer is of great significance for the study of gap flow theory. In this study, the PIV technique was utilized to experimentally investigate the gap flow boundary layers with Reynolds numbers of 16,587–56,870 and gap ratios of 0.6–0.8. The characteristics of the wall friction velocity, the boundary layer thickness, and the wall function of the gap flow boundary layer were analyzed, and the influences of the mean velocity of the gap flow and the gap ratio on the flow structure characteristics of the boundary layer were explored. The results show that using PIV to measure the velocity profile in the viscous sub-layer to solve for the wall friction velocity had good precision. The boundary layer thickness was inversely proportional to the mean velocity of the gap flow and the gap ratio. The wall functions of the boundary layer were as follows: in the viscous sub-layer (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo><</mo></mrow></semantics></math></inline-formula> 5.5), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>; in the transition layer (5.5 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo><</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo><</mo></mrow></semantics></math></inline-formula> 26), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>0.071</mn></mrow></mfrac><mi>t</mi><mi>a</mi><mi>n</mi><mi>h</mi><mfenced separators="|"><mrow><mn>0.071</mn><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfenced></mrow></semantics></math></inline-formula>; and in the logarithmic layer (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>></mo></mrow></semantics></math></inline-formula> 26), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mn>2.78</mn><mi>l</mi><mi>n</mi><mfenced separators="|"><mrow><msup><mrow><mi>y</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></mfenced><mo>+</mo><mn>3.8</mn></mrow></semantics></math></inline-formula>. The thickness of the logarithmic layer was proportional to the mean velocity of the gap flow and inversely proportional to the gap ratio. The inner region of the boundary layer extended to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo><</mo></mrow></semantics></math></inline-formula> 0.18<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>δ</mi></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo><</mo></mrow></semantics></math></inline-formula> 0.13(<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>h</mi></mrow></semantics></math></inline-formula>/2).https://www.mdpi.com/2073-4441/15/22/3989gap flowboundary layergap ratiowall functionwall friction velocity
spellingShingle Lei Sun
Xihuan Sun
Yongye Li
Cheng Wang
Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
Water
gap flow
boundary layer
gap ratio
wall function
wall friction velocity
title Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
title_full Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
title_fullStr Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
title_full_unstemmed Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
title_short Experimental Study on Flow Structure Characteristics of Gap Flow Boundary Layer Based on PIV
title_sort experimental study on flow structure characteristics of gap flow boundary layer based on piv
topic gap flow
boundary layer
gap ratio
wall function
wall friction velocity
url https://www.mdpi.com/2073-4441/15/22/3989
work_keys_str_mv AT leisun experimentalstudyonflowstructurecharacteristicsofgapflowboundarylayerbasedonpiv
AT xihuansun experimentalstudyonflowstructurecharacteristicsofgapflowboundarylayerbasedonpiv
AT yongyeli experimentalstudyonflowstructurecharacteristicsofgapflowboundarylayerbasedonpiv
AT chengwang experimentalstudyonflowstructurecharacteristicsofgapflowboundarylayerbasedonpiv