The local metric dimension of split and unicyclic graphs

A set <em>W</em> is called a local resolving set of <em>G</em> if the distance of <em>u</em> and <em>v</em> to some elements of <em>W</em> are distinct for every two adjacent vertices <em>u</em> and <em>v</em> in <...

Full description

Bibliographic Details
Main Authors: Dinny Fitriani, Anisa Rarasati, Suhadi Wido Saputro, Edy Tri Baskoro
Format: Article
Language:English
Published: InaCombS; Universitas Jember; dan Universitas Indonesia 2022-06-01
Series:Indonesian Journal of Combinatorics
Subjects:
Online Access:http://www.ijc.or.id/index.php/ijc/article/view/174
_version_ 1797946199809982464
author Dinny Fitriani
Anisa Rarasati
Suhadi Wido Saputro
Edy Tri Baskoro
author_facet Dinny Fitriani
Anisa Rarasati
Suhadi Wido Saputro
Edy Tri Baskoro
author_sort Dinny Fitriani
collection DOAJ
description A set <em>W</em> is called a local resolving set of <em>G</em> if the distance of <em>u</em> and <em>v</em> to some elements of <em>W</em> are distinct for every two adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>.  The local metric dimension of <em>G</em> is the minimum cardinality of a local resolving set of <em>G</em>.  A connected graph <em>G</em> is called a split graph if <em>V</em>(<em>G</em>) can be partitioned into two subsets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> where an induced subgraph of G by <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs.
first_indexed 2024-04-10T21:07:06Z
format Article
id doaj.art-0012a81e32cd455b90b806b9ec1acb2f
institution Directory Open Access Journal
issn 2541-2205
language English
last_indexed 2024-04-10T21:07:06Z
publishDate 2022-06-01
publisher InaCombS; Universitas Jember; dan Universitas Indonesia
record_format Article
series Indonesian Journal of Combinatorics
spelling doaj.art-0012a81e32cd455b90b806b9ec1acb2f2023-01-22T03:10:03ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052022-06-0161505710.19184/ijc.2022.6.1.371The local metric dimension of split and unicyclic graphsDinny Fitriani0Anisa Rarasati1Suhadi Wido Saputro2Edy Tri Baskoro3Institut Teknologi BandungInstitut Teknologi BandungInstitut Teknologi BandungInstitut Teknologi BandungA set <em>W</em> is called a local resolving set of <em>G</em> if the distance of <em>u</em> and <em>v</em> to some elements of <em>W</em> are distinct for every two adjacent vertices <em>u</em> and <em>v</em> in <em>G</em>.  The local metric dimension of <em>G</em> is the minimum cardinality of a local resolving set of <em>G</em>.  A connected graph <em>G</em> is called a split graph if <em>V</em>(<em>G</em>) can be partitioned into two subsets <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> where an induced subgraph of G by <em>V</em><sub>1</sub> and <em>V</em><sub>2</sub> is a complete graph and an independent set, respectively.  We also consider a graph, namely the unicyclic graph which is a connected graph containing exactly one cycle.  In this paper, we provide a general sharp bounds of local metric dimension of split graph.  We also determine an exact value of local metric dimension of any unicyclic graphs.http://www.ijc.or.id/index.php/ijc/article/view/174local basis, local metric dimension, local resolving set, split graph, unicyclic graph
spellingShingle Dinny Fitriani
Anisa Rarasati
Suhadi Wido Saputro
Edy Tri Baskoro
The local metric dimension of split and unicyclic graphs
Indonesian Journal of Combinatorics
local basis, local metric dimension, local resolving set, split graph, unicyclic graph
title The local metric dimension of split and unicyclic graphs
title_full The local metric dimension of split and unicyclic graphs
title_fullStr The local metric dimension of split and unicyclic graphs
title_full_unstemmed The local metric dimension of split and unicyclic graphs
title_short The local metric dimension of split and unicyclic graphs
title_sort local metric dimension of split and unicyclic graphs
topic local basis, local metric dimension, local resolving set, split graph, unicyclic graph
url http://www.ijc.or.id/index.php/ijc/article/view/174
work_keys_str_mv AT dinnyfitriani thelocalmetricdimensionofsplitandunicyclicgraphs
AT anisararasati thelocalmetricdimensionofsplitandunicyclicgraphs
AT suhadiwidosaputro thelocalmetricdimensionofsplitandunicyclicgraphs
AT edytribaskoro thelocalmetricdimensionofsplitandunicyclicgraphs
AT dinnyfitriani localmetricdimensionofsplitandunicyclicgraphs
AT anisararasati localmetricdimensionofsplitandunicyclicgraphs
AT suhadiwidosaputro localmetricdimensionofsplitandunicyclicgraphs
AT edytribaskoro localmetricdimensionofsplitandunicyclicgraphs