An Algebraic Characterization of Prefix-Strict Languages

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></semantics></math></inline-formula> be the...

Full description

Bibliographic Details
Main Authors: Jing Tian, Yizhi Chen, Hui Xu
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/19/3416
_version_ 1827654051272065024
author Jing Tian
Yizhi Chen
Hui Xu
author_facet Jing Tian
Yizhi Chen
Hui Xu
author_sort Jing Tian
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></semantics></math></inline-formula> be the set of all finite words over a finite alphabet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Σ</mi></semantics></math></inline-formula>. A word <i>u</i> is called a strict prefix of a word <i>v</i>, if <i>u</i> is a prefix of <i>v</i> and there is no other way to show that <i>u</i> is a subword of <i>v</i>. A language <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>⊆</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> is said to be prefix-strict, if for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>L</mi></mrow></semantics></math></inline-formula>, <i>u</i> is a subword of <i>v</i> always implies that <i>u</i> is a strict prefix of <i>v</i>. Denote the class of all prefix-strict languages in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></semantics></math></inline-formula> by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. This paper characterizes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula> as a universe of a model of the free object for the ai-semiring variety satisfying the additional identities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mi>x</mi><mo>≈</mo><mi>x</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mi>x</mi><mi>z</mi><mo>≈</mo><mi>x</mi></mrow></semantics></math></inline-formula>. Furthermore, the analogous results for so-called suffix-strict languages and infix-strict languages are introduced.
first_indexed 2024-03-09T21:29:06Z
format Article
id doaj.art-002b5ea64ee84458ac0894619090a149
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T21:29:06Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-002b5ea64ee84458ac0894619090a1492023-11-23T21:01:08ZengMDPI AGMathematics2227-73902022-09-011019341610.3390/math10193416An Algebraic Characterization of Prefix-Strict LanguagesJing Tian0Yizhi Chen1Hui Xu2School of Economics and Finance, Xi’an International Studies University, Xi’an 710128, ChinaSchool of Mathematics and Statistics, Huizhou University, Huizhou 516007, ChinaSchool of Science, Air Force Engineering University, Xi’an 710051, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></semantics></math></inline-formula> be the set of all finite words over a finite alphabet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="sans-serif">Σ</mi></semantics></math></inline-formula>. A word <i>u</i> is called a strict prefix of a word <i>v</i>, if <i>u</i> is a prefix of <i>v</i> and there is no other way to show that <i>u</i> is a subword of <i>v</i>. A language <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>⊆</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula> is said to be prefix-strict, if for any <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>L</mi></mrow></semantics></math></inline-formula>, <i>u</i> is a subword of <i>v</i> always implies that <i>u</i> is a strict prefix of <i>v</i>. Denote the class of all prefix-strict languages in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup></semantics></math></inline-formula> by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula>. This paper characterizes <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">P</mi><mo>(</mo><msup><mi mathvariant="sans-serif">Σ</mi><mo>+</mo></msup><mo>)</mo></mrow></semantics></math></inline-formula> as a universe of a model of the free object for the ai-semiring variety satisfying the additional identities <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mi>x</mi><mo>≈</mo><mi>x</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mi>x</mi><mi>z</mi><mo>≈</mo><mi>x</mi></mrow></semantics></math></inline-formula>. Furthermore, the analogous results for so-called suffix-strict languages and infix-strict languages are introduced.https://www.mdpi.com/2227-7390/10/19/3416free algebraformal languagesembedding orderai-semirings variety
spellingShingle Jing Tian
Yizhi Chen
Hui Xu
An Algebraic Characterization of Prefix-Strict Languages
Mathematics
free algebra
formal languages
embedding order
ai-semirings variety
title An Algebraic Characterization of Prefix-Strict Languages
title_full An Algebraic Characterization of Prefix-Strict Languages
title_fullStr An Algebraic Characterization of Prefix-Strict Languages
title_full_unstemmed An Algebraic Characterization of Prefix-Strict Languages
title_short An Algebraic Characterization of Prefix-Strict Languages
title_sort algebraic characterization of prefix strict languages
topic free algebra
formal languages
embedding order
ai-semirings variety
url https://www.mdpi.com/2227-7390/10/19/3416
work_keys_str_mv AT jingtian analgebraiccharacterizationofprefixstrictlanguages
AT yizhichen analgebraiccharacterizationofprefixstrictlanguages
AT huixu analgebraiccharacterizationofprefixstrictlanguages
AT jingtian algebraiccharacterizationofprefixstrictlanguages
AT yizhichen algebraiccharacterizationofprefixstrictlanguages
AT huixu algebraiccharacterizationofprefixstrictlanguages