An Unsupervised Classification Algorithm for Multi-Temporal Irrigated Area Mapping in Central Asia

Sound water resources planning and management requires adequate data with sufficient spatial and temporal resolution. This is especially true in the context of irrigated agriculture, which is one of the main consumptive users of the world’s freshwater resources. Existing remote sensing met...

Full description

Bibliographic Details
Main Authors: Silvan Ragettli, Timo Herberz, Tobias Siegfried
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/10/11/1823
Description
Summary:Sound water resources planning and management requires adequate data with sufficient spatial and temporal resolution. This is especially true in the context of irrigated agriculture, which is one of the main consumptive users of the world’s freshwater resources. Existing remote sensing methods for the management of irrigated agricultural systems are often based on empirical cropland data that are difficult to obtain, and that put into question the transferability of mapping algorithms in space and time. Here we implement an automatic irrigation mapping procedure in Google Earth Engine that uses surface reflectance satellite imagery from different sensors. The method is based on unsupervised training of a pixel-by-pixel classification algorithm within image regions identified through unsupervised object-based segmentation, followed by multi-temporal image analysis to distinguish productive irrigated fields from non-productive and non-irrigated areas. Ground-based data are not required. The final output of the mapping algorithm are monthly and annual irrigation maps (30 m resolution). The novel method is applied to the Central Asian Chu and Talas River Basins that are shared between upstream Kyrgyzstan and downstream Kazakhstan. We calculate the development of irrigated areas from 2000 to 2017 and assess the classification results in terms of robustness and accuracy. Based on seven available validation scenes (in total more than 2.5 million pixels) the classification accuracy is 77⁻96%. We show that on the Kyrgyz side of the Talas basin, the identified increasing trends over the years are highly significant (23% area increase between 2000 and 2017). In the Kazakh parts of the basins the irrigated acreages are relatively stable over time, but the average irrigation frequency within Soviet-era irrigation perimeters is very low, which points to a poor physical condition of the irrigation infrastructure and inadequate water supply.
ISSN:2072-4292