Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes

Snowmelt water in spring is an important source of soil water, which is critical to supporting crop growth. Quantifying the contribution of snowmelt water to soil water and its dynamic changes is essential for evaluating soil moisture and allocating agricultural water resources. In this paper, throu...

Full description

Bibliographic Details
Main Authors: Wenshuai Zhang, Chen Du, Lijuan Zhang, Yulong Tan, Yutao Huang, Meiyi Jiang
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/14/9/1368
_version_ 1797502489062277120
author Wenshuai Zhang
Chen Du
Lijuan Zhang
Yulong Tan
Yutao Huang
Meiyi Jiang
author_facet Wenshuai Zhang
Chen Du
Lijuan Zhang
Yulong Tan
Yutao Huang
Meiyi Jiang
author_sort Wenshuai Zhang
collection DOAJ
description Snowmelt water in spring is an important source of soil water, which is critical to supporting crop growth. Quantifying the contribution of snowmelt water to soil water and its dynamic changes is essential for evaluating soil moisture and allocating agricultural water resources. In this paper, through controlled outdoor experiments, different snow depths and soil depth gradients were set; and snow, precipitation, and soil samples were collected regularly. To analyze the contribution of snowmelt water to soil water and its dynamic changes, the MAT-253 stable isotope ratio mass spectrometer was adopted for hydrogen and oxygen isotope analyses. The results showed that the snowmelt water for snow depths of 10 cm, 30 cm, and 50 cm all contributed to the 0–30 cm soil layer. The contribution increased with soil depth, contributing 8.13%, 8.55%, and 11.24%, respectively. The contribution of the snow cover at the same depth to the soil moisture at different depths also varied, i.e., the contribution increased with increasing soil depth. The snowmelt water retention time at depths of 10 cm, 30 cm, and 50 cm was inconsistent, i.e., it was the longest at 0–10 cm (average of 69 days), followed by 20–30 cm (average of 59 days), and the shortest at 10–20 cm (average of 54 days). The greater the snow depth, the shorter the retention time of the snowmelt water in the different soil layers. For surface soil, the contribution of the snowmelt water at greater depths was significantly different; while for deep soil, the contribution was more sensitive to the snow depth. Regardless of snow depth, soil contributions at different depths were significantly different. Precipitation also affected the contribution of the snowmelt water to the soil water, exhibiting different effects at different depths.
first_indexed 2024-03-10T03:33:50Z
format Article
id doaj.art-002d911d578742bebe8d3dd7cac3ed62
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T03:33:50Z
publishDate 2022-04-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-002d911d578742bebe8d3dd7cac3ed622023-11-23T09:34:44ZengMDPI AGWater2073-44412022-04-01149136810.3390/w14091368Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic ChangesWenshuai Zhang0Chen Du1Lijuan Zhang2Yulong Tan3Yutao Huang4Meiyi Jiang5Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, ChinaHeilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, ChinaHeilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, ChinaHeilongjiang Province Hulin Meteorological Bureau, Hulin 154300, ChinaHeilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, ChinaHeilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, ChinaSnowmelt water in spring is an important source of soil water, which is critical to supporting crop growth. Quantifying the contribution of snowmelt water to soil water and its dynamic changes is essential for evaluating soil moisture and allocating agricultural water resources. In this paper, through controlled outdoor experiments, different snow depths and soil depth gradients were set; and snow, precipitation, and soil samples were collected regularly. To analyze the contribution of snowmelt water to soil water and its dynamic changes, the MAT-253 stable isotope ratio mass spectrometer was adopted for hydrogen and oxygen isotope analyses. The results showed that the snowmelt water for snow depths of 10 cm, 30 cm, and 50 cm all contributed to the 0–30 cm soil layer. The contribution increased with soil depth, contributing 8.13%, 8.55%, and 11.24%, respectively. The contribution of the snow cover at the same depth to the soil moisture at different depths also varied, i.e., the contribution increased with increasing soil depth. The snowmelt water retention time at depths of 10 cm, 30 cm, and 50 cm was inconsistent, i.e., it was the longest at 0–10 cm (average of 69 days), followed by 20–30 cm (average of 59 days), and the shortest at 10–20 cm (average of 54 days). The greater the snow depth, the shorter the retention time of the snowmelt water in the different soil layers. For surface soil, the contribution of the snowmelt water at greater depths was significantly different; while for deep soil, the contribution was more sensitive to the snow depth. Regardless of snow depth, soil contributions at different depths were significantly different. Precipitation also affected the contribution of the snowmelt water to the soil water, exhibiting different effects at different depths.https://www.mdpi.com/2073-4441/14/9/1368hydrogen and oxygen isotopessnowmelt watersoil watercontribution
spellingShingle Wenshuai Zhang
Chen Du
Lijuan Zhang
Yulong Tan
Yutao Huang
Meiyi Jiang
Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
Water
hydrogen and oxygen isotopes
snowmelt water
soil water
contribution
title Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
title_full Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
title_fullStr Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
title_full_unstemmed Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
title_short Contribution of Spring Snowmelt Water to Soil Water in Northeast China and Its Dynamic Changes
title_sort contribution of spring snowmelt water to soil water in northeast china and its dynamic changes
topic hydrogen and oxygen isotopes
snowmelt water
soil water
contribution
url https://www.mdpi.com/2073-4441/14/9/1368
work_keys_str_mv AT wenshuaizhang contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges
AT chendu contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges
AT lijuanzhang contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges
AT yulongtan contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges
AT yutaohuang contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges
AT meiyijiang contributionofspringsnowmeltwatertosoilwaterinnortheastchinaanditsdynamicchanges