Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval

This paper is concerned with the existence and multiplicity of monotone positive solutions for a class of nonlinear fractional differential equation with a disturbance parameter in the integral boundary conditions on the infinite interval. By using Guo–Krasnosel’skii fixed-point theorem and the anal...

Full description

Bibliographic Details
Main Authors: Yanping Zheng, Hui Yang, Wenxia Wang
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/2/325
_version_ 1827371539391053824
author Yanping Zheng
Hui Yang
Wenxia Wang
author_facet Yanping Zheng
Hui Yang
Wenxia Wang
author_sort Yanping Zheng
collection DOAJ
description This paper is concerned with the existence and multiplicity of monotone positive solutions for a class of nonlinear fractional differential equation with a disturbance parameter in the integral boundary conditions on the infinite interval. By using Guo–Krasnosel’skii fixed-point theorem and the analytic technique, we divide the range of parameter for the existence of at least two, one and no positive solutions for the problem. In the end, an example is given to illustrate our main results.
first_indexed 2024-03-08T10:40:55Z
format Article
id doaj.art-003c59eaf21946c7a6d6405e62a67b38
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-08T10:40:55Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-003c59eaf21946c7a6d6405e62a67b382024-01-26T17:33:36ZengMDPI AGMathematics2227-73902024-01-0112232510.3390/math12020325Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite IntervalYanping Zheng0Hui Yang1Wenxia Wang2School of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, ChinaSchool of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, ChinaSchool of Mathematics and Statistics, Taiyuan Normal University, Jinzhong 030619, ChinaThis paper is concerned with the existence and multiplicity of monotone positive solutions for a class of nonlinear fractional differential equation with a disturbance parameter in the integral boundary conditions on the infinite interval. By using Guo–Krasnosel’skii fixed-point theorem and the analytic technique, we divide the range of parameter for the existence of at least two, one and no positive solutions for the problem. In the end, an example is given to illustrate our main results.https://www.mdpi.com/2227-7390/12/2/325boundary value problemdisturbance parameterinfinite intervalmonotone positive solution
spellingShingle Yanping Zheng
Hui Yang
Wenxia Wang
Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
Mathematics
boundary value problem
disturbance parameter
infinite interval
monotone positive solution
title Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
title_full Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
title_fullStr Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
title_full_unstemmed Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
title_short Monotone Positive Solutions for Nonlinear Fractional Differential Equations with a Disturbance Parameter on the Infinite Interval
title_sort monotone positive solutions for nonlinear fractional differential equations with a disturbance parameter on the infinite interval
topic boundary value problem
disturbance parameter
infinite interval
monotone positive solution
url https://www.mdpi.com/2227-7390/12/2/325
work_keys_str_mv AT yanpingzheng monotonepositivesolutionsfornonlinearfractionaldifferentialequationswithadisturbanceparameterontheinfiniteinterval
AT huiyang monotonepositivesolutionsfornonlinearfractionaldifferentialequationswithadisturbanceparameterontheinfiniteinterval
AT wenxiawang monotonepositivesolutionsfornonlinearfractionaldifferentialequationswithadisturbanceparameterontheinfiniteinterval