Direct Detection of Protein Biomarkers in Human Fluids Using Site-Specific Antibody Immobilization Strategies

Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferre...

Full description

Bibliographic Details
Main Authors: Maria Soler, M.-Carmen Estevez, Mar Alvarez, Marinus A. Otte, Borja Sepulveda, Laura M. Lechuga
Format: Article
Language:English
Published: MDPI AG 2014-01-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/2/2239
Description
Summary:Design of an optimal surface biofunctionalization still remains an important challenge for the application of biosensors in clinical practice and therapeutic follow-up. Optical biosensors offer real-time monitoring and highly sensitive label-free analysis, along with great potential to be transferred to portable devices. When applied in direct immunoassays, their analytical features depend strongly on the antibody immobilization strategy. A strategy for correct immobilization of antibodies based on the use of ProLinker™ has been evaluated and optimized in terms of sensitivity, selectivity, stability and reproducibility. Special effort has been focused on avoiding antibody manipulation, preventing nonspecific adsorption and obtaining a robust biosurface with regeneration capabilities. ProLinker™-based approach has demonstrated to fulfill those crucial requirements and, in combination with PEG-derivative compounds, has shown encouraging results for direct detection in biological fluids, such as pure urine or diluted serum. Furthermore, we have implemented the ProLinker™ strategy to a novel nanoplasmonic-based biosensor resulting in promising advantages for its application in clinical and biomedical diagnosis.
ISSN:1424-8220