Multi-Patch Hierarchical Transmission Channel Image Dehazing Network Based on Dual Attention Level Feature Fusion

Unmanned Aerial Vehicle (UAV) inspection of transmission channels in mountainous areas is susceptible to non-homogeneous fog, such as up-slope fog and advection fog, which causes crucial portions of transmission lines or towers to become fuzzy or even wholly concealed. This paper presents a Dual Att...

Full description

Bibliographic Details
Main Authors: Wenjiao Zai, Lisha Yan
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/16/7026
Description
Summary:Unmanned Aerial Vehicle (UAV) inspection of transmission channels in mountainous areas is susceptible to non-homogeneous fog, such as up-slope fog and advection fog, which causes crucial portions of transmission lines or towers to become fuzzy or even wholly concealed. This paper presents a Dual Attention Level Feature Fusion Multi-Patch Hierarchical Network (DAMPHN) for single image defogging to address the bad quality of cross-level feature fusion in Fast Deep Multi-Patch Hierarchical Networks (FDMPHN). Compared with FDMPHN before improvement, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) of DAMPHN are increased by 0.3 dB and 0.011 on average, and the Average Processing Time (APT) of a single picture is shortened by 11%. Additionally, compared with the other three excellent defogging methods, the PSNR and SSIM values DAMPHN are increased by 1.75 dB and 0.022 on average. Then, to mimic non-homogeneous fog, we combine the single picture depth information with 3D Berlin noise to create the UAV-HAZE dataset, which is used in the field of UAV power assessment. The experiment demonstrates that DAMPHN offers excellent defogging results and is competitive in no-reference and full-reference assessment indices.
ISSN:1424-8220