Low blank sampling method for measurement of the nitrogen isotopic composition of atmospheric NOx.

The nitrogen isotopic composition of nitrogen oxide (NOx) is useful for estimating its sources and sinks. Several methods have been developed to convert atmospheric nitric oxide (NO) and/or nitrogen dioxide (NO2) to nitrites and/or nitrates for collection. However, the collection efficiency and blan...

Full description

Bibliographic Details
Main Authors: Kazuki Kamezaki, Takahisa Maeda, Shigeyuki Ishidoya, Ayumi Tsukasaki, Shohei Murayama, Naoki Kaneyasu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0298539&type=printable
Description
Summary:The nitrogen isotopic composition of nitrogen oxide (NOx) is useful for estimating its sources and sinks. Several methods have been developed to convert atmospheric nitric oxide (NO) and/or nitrogen dioxide (NO2) to nitrites and/or nitrates for collection. However, the collection efficiency and blanks are poorly evaluated for many collection methods. Here, we present a method for collecting ambient NOx (NO and NO2 simultaneously) with over 90% efficiency collection of NOx and low blank (approximately 0.5 μM) using a 3 wt% hydrogen peroxide (H2O2) and 0.5 M sodium hydride (NaOH) solution. The 1σ uncertainty of the nitrogen isotopic composition was ± 1.2 ‰. The advantages of this method include its portability, simplicity, and the ability to collect the required amount of sample to analyze the nitrogen isotopic composition of ambient NOx in a short period of time. Using this method, we observed the nitrogen isotopic compositions of NOx at the Tsukuba and Yoyogi sites in Japan. The averaged δ15N(NOx) value and standard deviation (1σ) in the Yoyogi site was (-2.7 ± 1.8) ‰ and in the Tsukuba site was (-1.7 ± 0.9) ‰ during the sampling period. The main NOx source appears to be the vehicle exhaust in the two sites.
ISSN:1932-6203