RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
<p>This paper describes the first official release (v1.0) of RTTOV-gb. RTTOV-gb is a FORTRAN 90 code developed by adapting the atmospheric radiative transfer code RTTOV, focused on satellite-observing geometry, to the ground-based observing geometry. RTTOV-gb is designed to simulate ground-bas...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-05-01
|
Series: | Geoscientific Model Development |
Online Access: | https://www.geosci-model-dev.net/12/1833/2019/gmd-12-1833-2019.pdf |
_version_ | 1818041753615204352 |
---|---|
author | D. Cimini D. Cimini J. Hocking F. De Angelis A. Cersosimo F. Di Paola D. Gallucci S. Gentile E. Geraldi S. Larosa S. Nilo F. Romano E. Ricciardelli E. Ripepi M. Viggiano L. Luini C. Riva F. S. Marzano F. S. Marzano P. Martinet Y. Y. Song M. H. Ahn P. W. Rosenkranz |
author_facet | D. Cimini D. Cimini J. Hocking F. De Angelis A. Cersosimo F. Di Paola D. Gallucci S. Gentile E. Geraldi S. Larosa S. Nilo F. Romano E. Ricciardelli E. Ripepi M. Viggiano L. Luini C. Riva F. S. Marzano F. S. Marzano P. Martinet Y. Y. Song M. H. Ahn P. W. Rosenkranz |
author_sort | D. Cimini |
collection | DOAJ |
description | <p>This paper describes the first official release (v1.0) of
RTTOV-gb. RTTOV-gb is a FORTRAN 90 code developed by adapting the
atmospheric radiative transfer code RTTOV, focused on satellite-observing
geometry, to the ground-based observing geometry. RTTOV-gb is designed to
simulate ground-based upward-looking microwave radiometer (MWR) observations
of atmospheric downwelling natural radiation in the frequency range from 22
to 150 GHz. Given an atmospheric profile of temperature, water vapor, and,
optionally, cloud liquid water content, and together with a viewing
geometry, RTTOV-gb computes downwelling radiances and brightness
temperatures leaving the bottom of the atmosphere in each of the channels of the
sensor being simulated. In addition, it provides the sensitivity of
observations to the atmospheric thermodynamical state, i.e., the Jacobians.
Therefore, RTTOV-gb represents the forward model needed to assimilate
ground-based MWR data into numerical weather prediction models, which is
currently pursued internationally by several weather services. RTTOV-gb is
fully described in a previous paper (De Angelis et al., 2016), while several
updates are described here. In particular, two new MWR types and a new
parameterization for the atmospheric absorption model have been introduced since
the first paper. In addition, estimates of the uncertainty associated with
the absorption model and with the fast parameterization are given here.
Brightness temperatures (<span class="inline-formula"><strong><em>T</em></strong><sub>B</sub></span>) computed with RTTOV-gb v1.0 from
radiosonde profiles have been compared with ground-based MWR observations in six channels (23.8, 31.4, 72.5, 82.5, 90.0, and 150.0 GHz). The comparison
shows statistics within the expected accuracy. RTTOV-gb is now available to
licensed users free of charge from the Numerical Weather Prediction
Satellite Application Facility (NWP SAF) website, after registration.
Coefficients for four MWR instrument types and two absorption model
parameterizations are also freely available from the RTTOV-gb support
website.</p> |
first_indexed | 2024-12-10T08:35:26Z |
format | Article |
id | doaj.art-004dadd38a12461b8170d00cb8acf224 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-12-10T08:35:26Z |
publishDate | 2019-05-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-004dadd38a12461b8170d00cb8acf2242022-12-22T01:55:58ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-05-01121833184510.5194/gmd-12-1833-2019RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availabilityD. Cimini0D. Cimini1J. Hocking2F. De Angelis3A. Cersosimo4F. Di Paola5D. Gallucci6S. Gentile7E. Geraldi8S. Larosa9S. Nilo10F. Romano11E. Ricciardelli12E. Ripepi13M. Viggiano14L. Luini15C. Riva16F. S. Marzano17F. S. Marzano18P. Martinet19Y. Y. Song20M. H. Ahn21P. W. Rosenkranz22National Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyCenter of Excellence CETEMPS, University of L'Aquila, L'Aquila, 67100, ItalyMet Office, Exeter, UKCenter of Excellence CETEMPS, University of L'Aquila, L'Aquila, 67100, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyNational Research Council of Italy, Institute of Methodologies for Environmental Analysis, Potenza, 85050, ItalyDEIB – Politecnico di Milano, IEIIT – CNR, Milan, ItalyDEIB – Politecnico di Milano, IEIIT – CNR, Milan, ItalyCenter of Excellence CETEMPS, University of L'Aquila, L'Aquila, 67100, ItalyUniversity of Rome La Sapienza, Rome, ItalyCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceSchool of Engineering, Ewha Womans University, Seoul, South KoreaSchool of Engineering, Ewha Womans University, Seoul, South KoreaMassachusetts Institute of Technology, Cambridge, MA 02139, USA<p>This paper describes the first official release (v1.0) of RTTOV-gb. RTTOV-gb is a FORTRAN 90 code developed by adapting the atmospheric radiative transfer code RTTOV, focused on satellite-observing geometry, to the ground-based observing geometry. RTTOV-gb is designed to simulate ground-based upward-looking microwave radiometer (MWR) observations of atmospheric downwelling natural radiation in the frequency range from 22 to 150 GHz. Given an atmospheric profile of temperature, water vapor, and, optionally, cloud liquid water content, and together with a viewing geometry, RTTOV-gb computes downwelling radiances and brightness temperatures leaving the bottom of the atmosphere in each of the channels of the sensor being simulated. In addition, it provides the sensitivity of observations to the atmospheric thermodynamical state, i.e., the Jacobians. Therefore, RTTOV-gb represents the forward model needed to assimilate ground-based MWR data into numerical weather prediction models, which is currently pursued internationally by several weather services. RTTOV-gb is fully described in a previous paper (De Angelis et al., 2016), while several updates are described here. In particular, two new MWR types and a new parameterization for the atmospheric absorption model have been introduced since the first paper. In addition, estimates of the uncertainty associated with the absorption model and with the fast parameterization are given here. Brightness temperatures (<span class="inline-formula"><strong><em>T</em></strong><sub>B</sub></span>) computed with RTTOV-gb v1.0 from radiosonde profiles have been compared with ground-based MWR observations in six channels (23.8, 31.4, 72.5, 82.5, 90.0, and 150.0 GHz). The comparison shows statistics within the expected accuracy. RTTOV-gb is now available to licensed users free of charge from the Numerical Weather Prediction Satellite Application Facility (NWP SAF) website, after registration. Coefficients for four MWR instrument types and two absorption model parameterizations are also freely available from the RTTOV-gb support website.</p>https://www.geosci-model-dev.net/12/1833/2019/gmd-12-1833-2019.pdf |
spellingShingle | D. Cimini D. Cimini J. Hocking F. De Angelis A. Cersosimo F. Di Paola D. Gallucci S. Gentile E. Geraldi S. Larosa S. Nilo F. Romano E. Ricciardelli E. Ripepi M. Viggiano L. Luini C. Riva F. S. Marzano F. S. Marzano P. Martinet Y. Y. Song M. H. Ahn P. W. Rosenkranz RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability Geoscientific Model Development |
title | RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability |
title_full | RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability |
title_fullStr | RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability |
title_full_unstemmed | RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability |
title_short | RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability |
title_sort | rttov gb v1 0 updates on sensors absorption models uncertainty and availability |
url | https://www.geosci-model-dev.net/12/1833/2019/gmd-12-1833-2019.pdf |
work_keys_str_mv | AT dcimini rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT dcimini rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT jhocking rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT fdeangelis rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT acersosimo rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT fdipaola rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT dgallucci rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT sgentile rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT egeraldi rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT slarosa rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT snilo rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT fromano rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT ericciardelli rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT eripepi rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT mviggiano rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT lluini rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT criva rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT fsmarzano rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT fsmarzano rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT pmartinet rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT yysong rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT mhahn rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability AT pwrosenkranz rttovgbv10updatesonsensorsabsorptionmodelsuncertaintyandavailability |