Orbit Determination Using SLR Data for STSAT-2C:Short-arc Analysis

In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 – 2014/04) of normal point observ...

Full description

Bibliographic Details
Main Authors: Young-Rok Kim, Eunseo Park, Daniel Kucharski, Hyung-Chul Lim
Format: Article
Language:English
Published: The Korean Space Science Society 2015-09-01
Series:Journal of Astronomy and Space Sciences
Subjects:
Online Access:http://ocean.kisti.re.kr/downfile/volume/kosss/OJOOBS/2015/v32n3/OJOOBS_2015_v32n3_189.pdf
Description
Summary:In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 – 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.
ISSN:2093-5587
2093-1409