Bidiagonalization of (k, k + 1)-tridiagonal matrices

In this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is rela...

Full description

Bibliographic Details
Main Authors: Takahira S., Sogabe T., Usuda T.S.
Format: Article
Language:English
Published: De Gruyter 2019-01-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2019-0002
_version_ 1819044893117382656
author Takahira S.
Sogabe T.
Usuda T.S.
author_facet Takahira S.
Sogabe T.
Usuda T.S.
author_sort Takahira S.
collection DOAJ
description In this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is related to the fast block diagonalization algorithm using the permutation matrix from [T. Sogabe and M. El-Mikkawy, Appl. Math. Comput., 218, (2011), 2740-2743] and [A. Ohashi, T. Sogabe, and T. S. Usuda, Int. J. Pure and App. Math., 106, (2016), 513-523].
first_indexed 2024-12-21T10:19:54Z
format Article
id doaj.art-007af5e4abce4cd188c6a30657ffd6c8
institution Directory Open Access Journal
issn 2300-7451
language English
last_indexed 2024-12-21T10:19:54Z
publishDate 2019-01-01
publisher De Gruyter
record_format Article
series Special Matrices
spelling doaj.art-007af5e4abce4cd188c6a30657ffd6c82022-12-21T19:07:28ZengDe GruyterSpecial Matrices2300-74512019-01-0171202610.1515/spma-2019-0002spma-2019-0002Bidiagonalization of (k, k + 1)-tridiagonal matricesTakahira S.0Sogabe T.1Usuda T.S.2Graduate School of Information Science & Technology, Aichi Prefectural University,Toyota, JapanGraduate School of Engineering, Nagoya University,Toyota, JapanSchool of Information Science & Technology, Aichi Prefectural University,Toyota, JapanIn this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is related to the fast block diagonalization algorithm using the permutation matrix from [T. Sogabe and M. El-Mikkawy, Appl. Math. Comput., 218, (2011), 2740-2743] and [A. Ohashi, T. Sogabe, and T. S. Usuda, Int. J. Pure and App. Math., 106, (2016), 513-523].https://doi.org/10.1515/spma-2019-0002(kk + 1)-tridiagonal matrixbidiagonalizationeigenvaluesprimary 65f15secondary 65f30
spellingShingle Takahira S.
Sogabe T.
Usuda T.S.
Bidiagonalization of (k, k + 1)-tridiagonal matrices
Special Matrices
(k
k + 1)-tridiagonal matrix
bidiagonalization
eigenvalues
primary 65f15
secondary 65f30
title Bidiagonalization of (k, k + 1)-tridiagonal matrices
title_full Bidiagonalization of (k, k + 1)-tridiagonal matrices
title_fullStr Bidiagonalization of (k, k + 1)-tridiagonal matrices
title_full_unstemmed Bidiagonalization of (k, k + 1)-tridiagonal matrices
title_short Bidiagonalization of (k, k + 1)-tridiagonal matrices
title_sort bidiagonalization of k k 1 tridiagonal matrices
topic (k
k + 1)-tridiagonal matrix
bidiagonalization
eigenvalues
primary 65f15
secondary 65f30
url https://doi.org/10.1515/spma-2019-0002
work_keys_str_mv AT takahiras bidiagonalizationofkk1tridiagonalmatrices
AT sogabet bidiagonalizationofkk1tridiagonalmatrices
AT usudats bidiagonalizationofkk1tridiagonalmatrices