Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model

Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the <i>mdx</i> mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the <i>Cmah</i> gene...

Full description

Bibliographic Details
Main Authors: Paul Ritter, Stefanie Nübler, Andreas Buttgereit, Lucas R. Smith, Alexander Mühlberg, Julian Bauer, Mena Michael, Lucas Kreiß, Michael Haug, Elisabeth Barton, Oliver Friedrich
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/18/10841
_version_ 1797487073349861376
author Paul Ritter
Stefanie Nübler
Andreas Buttgereit
Lucas R. Smith
Alexander Mühlberg
Julian Bauer
Mena Michael
Lucas Kreiß
Michael Haug
Elisabeth Barton
Oliver Friedrich
author_facet Paul Ritter
Stefanie Nübler
Andreas Buttgereit
Lucas R. Smith
Alexander Mühlberg
Julian Bauer
Mena Michael
Lucas Kreiß
Michael Haug
Elisabeth Barton
Oliver Friedrich
author_sort Paul Ritter
collection DOAJ
description Duchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the <i>mdx</i> mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the <i>Cmah</i> gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of ‘structural weakness’, intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from <i>extensor digitorum longus</i> (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> diaphragm was similar to <i>wt</i> mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.
first_indexed 2024-03-09T23:42:28Z
format Article
id doaj.art-0096212f5481494bb713aa7c78ecce29
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-09T23:42:28Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-0096212f5481494bb713aa7c78ecce292023-11-23T16:49:00ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672022-09-0123181084110.3390/ijms231810841Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) ModelPaul Ritter0Stefanie Nübler1Andreas Buttgereit2Lucas R. Smith3Alexander Mühlberg4Julian Bauer5Mena Michael6Lucas Kreiß7Michael Haug8Elisabeth Barton9Oliver Friedrich10Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyDepartment of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95618, USAInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyCollege of Health & Human Performance, University of Florida, Gainesville, FL 32611, USAInstitute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, GermanyDuchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the <i>mdx</i> mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the <i>Cmah</i> gene led to a more DMD-like phenotype (i.e., more fibrosis). Although fibrosis is thought to be the major determinant of ‘structural weakness’, intracellular remodeling of myofibrillar geometry was shown to be a major cellular determinant thereof. To dissect the respective contribution to muscle weakness, we assessed biomechanics and extra- and intracellular architecture of whole muscle and single fibers from <i>extensor digitorum longus</i> (EDL) and diaphragm. Despite increased collagen contents in both muscles, passive stiffness in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> diaphragm was similar to <i>wt</i> mice (EDL muscles were twice as stiff). Isometric twitch and tetanic stresses were 50% reduced in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> diaphragm (15% in EDL). Myofibrillar architecture was severely compromised in <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> single fibers of both muscle types, but more pronounced in diaphragm. Our results show that the <i>mdx Cmah<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mo>/</mo><mo>−</mo></mrow></msup></semantics></math></inline-formula></i> genotype reproduces DMD-like fibrosis but is not associated with changes in passive visco-elastic muscle stiffness. Furthermore, detriments in active isometric force are compatible with the pronounced myofibrillar disarray of the dystrophic background.https://www.mdpi.com/1422-0067/23/18/10841muscular dystrophyskeletal musclemultiphoton microscopyverniers densitycosine angle sum
spellingShingle Paul Ritter
Stefanie Nübler
Andreas Buttgereit
Lucas R. Smith
Alexander Mühlberg
Julian Bauer
Mena Michael
Lucas Kreiß
Michael Haug
Elisabeth Barton
Oliver Friedrich
Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
International Journal of Molecular Sciences
muscular dystrophy
skeletal muscle
multiphoton microscopy
verniers density
cosine angle sum
title Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
title_full Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
title_fullStr Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
title_full_unstemmed Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
title_short Myofibrillar Lattice Remodeling Is a Structural Cytoskeletal Predictor of Diaphragm Muscle Weakness in a Fibrotic <i>mdx</i> (<i>mdx Cmah<sup>−/−</sup></i>) Model
title_sort myofibrillar lattice remodeling is a structural cytoskeletal predictor of diaphragm muscle weakness in a fibrotic i mdx i i mdx cmah sup sup i model
topic muscular dystrophy
skeletal muscle
multiphoton microscopy
verniers density
cosine angle sum
url https://www.mdpi.com/1422-0067/23/18/10841
work_keys_str_mv AT paulritter myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT stefanienubler myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT andreasbuttgereit myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT lucasrsmith myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT alexandermuhlberg myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT julianbauer myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT menamichael myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT lucaskreiß myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT michaelhaug myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT elisabethbarton myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel
AT oliverfriedrich myofibrillarlatticeremodelingisastructuralcytoskeletalpredictorofdiaphragmmuscleweaknessinafibroticimdxiimdxcmahsupsupimodel