Research on the rapid growth and structure of ultra-nanocrystalline diamond thin films

Ultra-nanocrystalline diamond (UNCD) films were prepared by microwave plasma chemical vapour deposition (MPCVD) at different temperature conditions by adjusting the microwave power. The effects of the activation power of the reaction source and effects of the temperature of the substrate on the grow...

Full description

Bibliographic Details
Main Authors: Shaobo WEI, Bing WANG, Ying XIONG
Format: Article
Language:zho
Published: Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd. 2023-04-01
Series:Jin'gangshi yu moliao moju gongcheng
Subjects:
Online Access:http://www.jgszz.cn/article/doi/10.13394/j.cnki.jgszz.2022.0122
Description
Summary:Ultra-nanocrystalline diamond (UNCD) films were prepared by microwave plasma chemical vapour deposition (MPCVD) at different temperature conditions by adjusting the microwave power. The effects of the activation power of the reaction source and effects of the temperature of the substrate on the growth and composition of the UNCD films were compared and analysed in order to obtain the technique to rapidly grow high-quality UNCD films. SEM, XRD and Raman methods were used to characterise the morphological structure, phase composition and growth rate of the UNCD films, while OES spectroscopy was used to monitor the state of the growth groups during the deposition of the UNCD films. The results showed that the deposition temperature of the UNCD films ranged from 450 to 650 ℃; that the peak intensity of CN and C2 groups in the OES spectra increased with the increase of power and substrate temperature; that the growth rate increased from 0.82 μm/h to 6.62 μm/h; and that the grain size in the films increased. The average grain size was less than 10.00 nm, and the surface was flatter and smoother, forming a surface profile more favourable to the mechanical properties. Therefore, the use of diisopropylamine liquid small molecules as the reaction source, together with the application of higher microwave power and deposition at higher substrate temperatures, is an effective way to mushroom high-quality UNCD films.
ISSN:1006-852X