In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma

IntroductionEpendymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who surv...

Full description

Bibliographic Details
Main Authors: Jacqueline P. Whitehouse, Hilary Hii, Chelsea Mayoh, Marie Wong, Pamela Ajuyah, Paulette Barahona, Louise Cui, Hetal Dholaria, Christine L. White, Molly K. Buntine, Jacob Byrne, Keteryne Rodrigues da Silva, Meegan Howlett, Emily J. Girard, Maria Tsoli, David S. Ziegler, Jason M. Dyke, Sharon Lee, Paul G. Ekert, Mark J. Cowley, Nicholas G. Gottardo, Raelene Endersby
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-03-01
Series:Frontiers in Oncology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fonc.2023.1123492/full
_version_ 1811160404523483136
author Jacqueline P. Whitehouse
Jacqueline P. Whitehouse
Hilary Hii
Chelsea Mayoh
Chelsea Mayoh
Marie Wong
Marie Wong
Pamela Ajuyah
Paulette Barahona
Louise Cui
Hetal Dholaria
Hetal Dholaria
Hetal Dholaria
Christine L. White
Christine L. White
Christine L. White
Molly K. Buntine
Molly K. Buntine
Jacob Byrne
Keteryne Rodrigues da Silva
Keteryne Rodrigues da Silva
Meegan Howlett
Meegan Howlett
Emily J. Girard
Emily J. Girard
Maria Tsoli
Maria Tsoli
David S. Ziegler
David S. Ziegler
David S. Ziegler
Jason M. Dyke
Jason M. Dyke
Sharon Lee
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Mark J. Cowley
Mark J. Cowley
Nicholas G. Gottardo
Nicholas G. Gottardo
Nicholas G. Gottardo
Raelene Endersby
Raelene Endersby
author_facet Jacqueline P. Whitehouse
Jacqueline P. Whitehouse
Hilary Hii
Chelsea Mayoh
Chelsea Mayoh
Marie Wong
Marie Wong
Pamela Ajuyah
Paulette Barahona
Louise Cui
Hetal Dholaria
Hetal Dholaria
Hetal Dholaria
Christine L. White
Christine L. White
Christine L. White
Molly K. Buntine
Molly K. Buntine
Jacob Byrne
Keteryne Rodrigues da Silva
Keteryne Rodrigues da Silva
Meegan Howlett
Meegan Howlett
Emily J. Girard
Emily J. Girard
Maria Tsoli
Maria Tsoli
David S. Ziegler
David S. Ziegler
David S. Ziegler
Jason M. Dyke
Jason M. Dyke
Sharon Lee
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Mark J. Cowley
Mark J. Cowley
Nicholas G. Gottardo
Nicholas G. Gottardo
Nicholas G. Gottardo
Raelene Endersby
Raelene Endersby
author_sort Jacqueline P. Whitehouse
collection DOAJ
description IntroductionEpendymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion.MethodsPatient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing.ResultsBoth patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo.DiscussionOthers who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.
first_indexed 2024-04-10T05:56:49Z
format Article
id doaj.art-009c2573d20c46b8a58d763a746781a4
institution Directory Open Access Journal
issn 2234-943X
language English
last_indexed 2024-04-10T05:56:49Z
publishDate 2023-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Oncology
spelling doaj.art-009c2573d20c46b8a58d763a746781a42023-03-03T09:25:28ZengFrontiers Media S.A.Frontiers in Oncology2234-943X2023-03-011310.3389/fonc.2023.11234921123492In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymomaJacqueline P. Whitehouse0Jacqueline P. Whitehouse1Hilary Hii2Chelsea Mayoh3Chelsea Mayoh4Marie Wong5Marie Wong6Pamela Ajuyah7Paulette Barahona8Louise Cui9Hetal Dholaria10Hetal Dholaria11Hetal Dholaria12Christine L. White13Christine L. White14Christine L. White15Molly K. Buntine16Molly K. Buntine17Jacob Byrne18Keteryne Rodrigues da Silva19Keteryne Rodrigues da Silva20Meegan Howlett21Meegan Howlett22Emily J. Girard23Emily J. Girard24Maria Tsoli25Maria Tsoli26David S. Ziegler27David S. Ziegler28David S. Ziegler29Jason M. Dyke30Jason M. Dyke31Sharon Lee32Paul G. Ekert33Paul G. Ekert34Paul G. Ekert35Paul G. Ekert36Paul G. Ekert37Mark J. Cowley38Mark J. Cowley39Nicholas G. Gottardo40Nicholas G. Gottardo41Nicholas G. Gottardo42Raelene Endersby43Raelene Endersby44Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaCentre for Child Health Research, University of Western Australia, Nedlands, WA, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaDepartment of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, AustraliaDivision of Paediatrics, University of Western Australia Medical School, Nedlands, WA, AustraliaGenetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, AustraliaDepartment of Molecular and Translational Science, Monash University, Clayton, VIC, AustraliaDivision of Genetics and Genomics, Victorian Clinical Genetics Services, Parkville, VIC, AustraliaGenetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, AustraliaDepartment of Molecular and Translational Science, Monash University, Clayton, VIC, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia0Medical School of Rbeirão Preto (FMRP-USP), University of São Paulo, São Paulo, BrazilBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaCentre for Child Health Research, University of Western Australia, Nedlands, WA, Australia1Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States2Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United StatesChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia3Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia4Department of Neuropathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA, Australia5Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia6Department of Neurosurgery, Perth Children’s Hospital, Nedlands, WA, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia7Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia8Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia9The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, AustraliaChildren’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, AustraliaSchool of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaCentre for Child Health Research, University of Western Australia, Nedlands, WA, AustraliaDepartment of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, AustraliaBrain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, AustraliaCentre for Child Health Research, University of Western Australia, Nedlands, WA, AustraliaIntroductionEpendymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion.MethodsPatient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing.ResultsBoth patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo.DiscussionOthers who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.https://www.frontiersin.org/articles/10.3389/fonc.2023.1123492/fullependymomaposterior fossapatient-derivedxenograftmolecularpediatric cancer
spellingShingle Jacqueline P. Whitehouse
Jacqueline P. Whitehouse
Hilary Hii
Chelsea Mayoh
Chelsea Mayoh
Marie Wong
Marie Wong
Pamela Ajuyah
Paulette Barahona
Louise Cui
Hetal Dholaria
Hetal Dholaria
Hetal Dholaria
Christine L. White
Christine L. White
Christine L. White
Molly K. Buntine
Molly K. Buntine
Jacob Byrne
Keteryne Rodrigues da Silva
Keteryne Rodrigues da Silva
Meegan Howlett
Meegan Howlett
Emily J. Girard
Emily J. Girard
Maria Tsoli
Maria Tsoli
David S. Ziegler
David S. Ziegler
David S. Ziegler
Jason M. Dyke
Jason M. Dyke
Sharon Lee
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Paul G. Ekert
Mark J. Cowley
Mark J. Cowley
Nicholas G. Gottardo
Nicholas G. Gottardo
Nicholas G. Gottardo
Raelene Endersby
Raelene Endersby
In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
Frontiers in Oncology
ependymoma
posterior fossa
patient-derived
xenograft
molecular
pediatric cancer
title In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
title_full In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
title_fullStr In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
title_full_unstemmed In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
title_short In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma
title_sort in vivo loss of tumorigenicity in a patient derived orthotopic xenograft mouse model of ependymoma
topic ependymoma
posterior fossa
patient-derived
xenograft
molecular
pediatric cancer
url https://www.frontiersin.org/articles/10.3389/fonc.2023.1123492/full
work_keys_str_mv AT jacquelinepwhitehouse invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT jacquelinepwhitehouse invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT hilaryhii invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT chelseamayoh invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT chelseamayoh invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mariewong invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mariewong invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT pamelaajuyah invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulettebarahona invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT louisecui invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT hetaldholaria invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT hetaldholaria invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT hetaldholaria invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT christinelwhite invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT christinelwhite invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT christinelwhite invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mollykbuntine invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mollykbuntine invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT jacobbyrne invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT keterynerodriguesdasilva invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT keterynerodriguesdasilva invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT meeganhowlett invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT meeganhowlett invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT emilyjgirard invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT emilyjgirard invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mariatsoli invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT mariatsoli invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT davidsziegler invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT davidsziegler invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT davidsziegler invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT jasonmdyke invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT jasonmdyke invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT sharonlee invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulgekert invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulgekert invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulgekert invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulgekert invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT paulgekert invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT markjcowley invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT markjcowley invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT nicholasggottardo invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT nicholasggottardo invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT nicholasggottardo invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT raeleneendersby invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma
AT raeleneendersby invivolossoftumorigenicityinapatientderivedorthotopicxenograftmousemodelofependymoma