Detection of Eumonospora henryae (Apicomplexa: Sarcocystidae) from Falco columbarius (Falconiformes: Aves): Comparison of host–parasite phylogram and comments on the family Sarcocystidae Poche, 1913

The genus Eumonospora Allen, 1933 (Apicomplexa: Sarcocystidae), an avian coccidia, is characterized by monosporocystic and octasporozoic oocysts without Stieda and substieda bodies. Some members of Eumonospora, which infect several raptor species, exhibit high levels of pathogenicity, making eumonos...

Full description

Bibliographic Details
Main Authors: Shyun Chou, Nobumoto Izawa, Kazunori Ike, Toshihiro Tokiwa
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:International Journal for Parasitology: Parasites and Wildlife
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221322442100002X
Description
Summary:The genus Eumonospora Allen, 1933 (Apicomplexa: Sarcocystidae), an avian coccidia, is characterized by monosporocystic and octasporozoic oocysts without Stieda and substieda bodies. Some members of Eumonospora, which infect several raptor species, exhibit high levels of pathogenicity, making eumonosporiosis the leading cause of death in captive-bred raptors. The host specificity of these species appears to be mesostenoxenous, as evidenced by unsuccessful transmission between different orders of avian hosts. However, several studies have detected Eumonospora spp. in taxonomically distant avian hosts, indicating that some of these species may be euryxenous. In the current study, diarrheic fecal examination of a captive-bred juvenile merlin (Falconiformes: Aves) in Tokyo, Japan, was conducted, and a large number of oocysts were morphologically and molecularly identified as E. henryae (Yakimoff and Matschulsky, 1932), a coccidia species reported only in Strigiformes. This is a new recorded host for this coccidia. Phylogenetic analyses via Bayesian inference and maximum likelihood methods using concatenated genomic datasets consisting of nuclear 18S rDNA, nuclear 28S rDNA and mitochondrial cytochrome C oxidase subunit 1 gene, revealed a well-supported monophyletic clade of Eumonospora spp. belonging to the family Sarcocystidae Poche 1913, which largely corresponded to the avian host phylogram. Therefore, based on distinguishable oocyst morphology, a new subfamily, Eumonosporinae, within the family Sarcocystidae, is proposed, and a reconsideration of the definition of Sarcocystidae is suggested. Further molecular characterization of this emerging pathogen, as well as clarification of its complete life cycle, including cyst-forming ability, is required for more appropriate generic assessment.
ISSN:2213-2244