Results for sixth order positively homogeneous equations

We consider positively homogeneous the sixth order differential equations of the type x (6) = h(t, x), where hpossesses the property that h(t, cx) = ch(t, x) for c ≥ 0. This class includes the linear equations x (6) = p(t)x and piece‐wise linear ones x (6) = k 2 x+ - k 1 x− . We consider conjugate p...

Full description

Bibliographic Details
Main Author: Tatjana Garbuza
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2009-03-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/6514
_version_ 1819350089997484032
author Tatjana Garbuza
author_facet Tatjana Garbuza
author_sort Tatjana Garbuza
collection DOAJ
description We consider positively homogeneous the sixth order differential equations of the type x (6) = h(t, x), where hpossesses the property that h(t, cx) = ch(t, x) for c ≥ 0. This class includes the linear equations x (6) = p(t)x and piece‐wise linear ones x (6) = k 2 x+ - k 1 x− . We consider conjugate points and angles associated with extremal solutions and prove some comparison results. First published online: 14 Oct 2010
first_indexed 2024-12-24T19:10:53Z
format Article
id doaj.art-00cb0db7e0fb4d119aefab3f8cf3a31c
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-24T19:10:53Z
publishDate 2009-03-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-00cb0db7e0fb4d119aefab3f8cf3a31c2022-12-21T16:43:00ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102009-03-0114110.3846/1392-6292.2009.14.25-32Results for sixth order positively homogeneous equationsTatjana Garbuza0Daugavpils University Parades str., Daugavpils, Latvia, LV-5400We consider positively homogeneous the sixth order differential equations of the type x (6) = h(t, x), where hpossesses the property that h(t, cx) = ch(t, x) for c ≥ 0. This class includes the linear equations x (6) = p(t)x and piece‐wise linear ones x (6) = k 2 x+ - k 1 x− . We consider conjugate points and angles associated with extremal solutions and prove some comparison results. First published online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/6514differential equations of 6‐th orderequations with asymmetric nonlinearitiesconjugate pointspositive homogeneous equations
spellingShingle Tatjana Garbuza
Results for sixth order positively homogeneous equations
Mathematical Modelling and Analysis
differential equations of 6‐th order
equations with asymmetric nonlinearities
conjugate points
positive homogeneous equations
title Results for sixth order positively homogeneous equations
title_full Results for sixth order positively homogeneous equations
title_fullStr Results for sixth order positively homogeneous equations
title_full_unstemmed Results for sixth order positively homogeneous equations
title_short Results for sixth order positively homogeneous equations
title_sort results for sixth order positively homogeneous equations
topic differential equations of 6‐th order
equations with asymmetric nonlinearities
conjugate points
positive homogeneous equations
url https://journals.vgtu.lt/index.php/MMA/article/view/6514
work_keys_str_mv AT tatjanagarbuza resultsforsixthorderpositivelyhomogeneousequations