Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions

The relation between the holonomy along a loop with the curvature form is a well-known fact, where the small square loop approximation of aholonomy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi ma...

Full description

Bibliographic Details
Main Authors: Seramika Ariwahjoedi, Freddy Permana Zen
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/11/2000
_version_ 1797457655260774400
author Seramika Ariwahjoedi
Freddy Permana Zen
author_facet Seramika Ariwahjoedi
Freddy Permana Zen
author_sort Seramika Ariwahjoedi
collection DOAJ
description The relation between the holonomy along a loop with the curvature form is a well-known fact, where the small square loop approximation of aholonomy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> is proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula>. In an attempt to generalize the relation for arbitrary loops, we encounter the following ambiguity. For a given loop <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> embedded in a manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> is an element of a Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>; the curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced><mo>∈</mo><mi mathvariant="fraktur">g</mi></mrow></semantics></math></inline-formula> is an element of the Lie algebra of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. However, it turns out that the curvature form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> obtained from the small loop approximation is ambiguous, as the information of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> are insufficient for determining a specific plane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> responsible for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula>. To resolve this ambiguity, it is necessary to specify the surface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> enclosed by the loop <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>; hence, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is defined as the limit of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> shrinks to a point. In this article, we try to understand this problem more clearly. As a result, we obtain an exact relation between the holonomy along a loop with the integral of the curvature form over a surface that it encloses. The derivation of this result can be viewed as an alternative proof of the non-Abelian Stokes theorem in two dimensions with some generalizations.
first_indexed 2024-03-09T16:25:10Z
format Article
id doaj.art-00d419770a244d07ada1d2e9d9e34c8d
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T16:25:10Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-00d419770a244d07ada1d2e9d9e34c8d2023-11-24T15:08:42ZengMDPI AGSymmetry2073-89942023-10-011511200010.3390/sym15112000Alternative Derivation of the Non-Abelian Stokes Theorem in Two DimensionsSeramika Ariwahjoedi0Freddy Permana Zen1Asia Pacific Center for Theoretical Physics, Pohang University of Science and Technology, Pohang 37673, Republic of KoreaTheoretical Physics Laboratory, THEPi Division, Department of Physics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, IndonesiaThe relation between the holonomy along a loop with the curvature form is a well-known fact, where the small square loop approximation of aholonomy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> is proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula>. In an attempt to generalize the relation for arbitrary loops, we encounter the following ambiguity. For a given loop <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> embedded in a manifold <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">M</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> is an element of a Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>; the curvature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced><mo>∈</mo><mi mathvariant="fraktur">g</mi></mrow></semantics></math></inline-formula> is an element of the Lie algebra of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">G</mi></semantics></math></inline-formula>. However, it turns out that the curvature form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula> obtained from the small loop approximation is ambiguous, as the information of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">H</mi><mfenced separators="" open="(" close=")"><mi>γ</mi><mo>,</mo><mi mathvariant="script">O</mi></mfenced></mrow></semantics></math></inline-formula> are insufficient for determining a specific plane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> responsible for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="bold-italic">R</mi><mfenced open="(" close=")"><mi>σ</mi></mfenced></mrow></semantics></math></inline-formula>. To resolve this ambiguity, it is necessary to specify the surface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> enclosed by the loop <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>; hence, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> is defined as the limit of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">S</mi></semantics></math></inline-formula> when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> shrinks to a point. In this article, we try to understand this problem more clearly. As a result, we obtain an exact relation between the holonomy along a loop with the integral of the curvature form over a surface that it encloses. The derivation of this result can be viewed as an alternative proof of the non-Abelian Stokes theorem in two dimensions with some generalizations.https://www.mdpi.com/2073-8994/15/11/2000holonomycurvature 2-formloop contractionhomotopynon-Abelian Stokes theorem
spellingShingle Seramika Ariwahjoedi
Freddy Permana Zen
Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
Symmetry
holonomy
curvature 2-form
loop contraction
homotopy
non-Abelian Stokes theorem
title Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
title_full Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
title_fullStr Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
title_full_unstemmed Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
title_short Alternative Derivation of the Non-Abelian Stokes Theorem in Two Dimensions
title_sort alternative derivation of the non abelian stokes theorem in two dimensions
topic holonomy
curvature 2-form
loop contraction
homotopy
non-Abelian Stokes theorem
url https://www.mdpi.com/2073-8994/15/11/2000
work_keys_str_mv AT seramikaariwahjoedi alternativederivationofthenonabelianstokestheoremintwodimensions
AT freddypermanazen alternativederivationofthenonabelianstokestheoremintwodimensions