Infiltration and Anti-Filtration Recharge-Pumping Well and Laboratory Recharge Tests

Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pu...

Full description

Bibliographic Details
Main Authors: Yuxi Li, Wanglin Li, Jiapeng He, Xiaojiao Zhang, Xinyi Li
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/10/12/1834
Description
Summary:Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pumping well and a square IAF recharge-pumping well were developed, the structure and characteristic were introduced, the calculation equations of single-well recharge quantity of IAF recharge-pumping wells, in unconfined aquifers were deduced, and the steady-state flow recharge test was conducted in the laboratory. The conclusions were as follows. The theoretical equation of the single-well recharge quantity was reasonable. Compared to existing anti-filtration recharge wells, the new IAF recharge-pumping well had stronger anti-deposit and anti-scour abilities and the single-well recharge quantity increased by 400%. Compared to the square IAF recharge-pumping well, the round IAF recharge-pumping well had a better inlet flow pattern and a larger single-well recharge quantity. With an increase in the test times, the single-well recharge quantity gradually decreased and tended to be stable. The existence of the pumping pipe had a little influence on the single-well recharge quantity.
ISSN:2073-4441